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REVIEW ARTICLE

Photon-Counting CT in the Head and Neck: Current
Applications and Future Prospects

John C. Benson, Norbert G. Campeau, Felix E. Diehn, John I. Lane, Shuai Leng, and Gul Moonis,
on behalf of the ASHNR Research Committee

ABSTRACT

SUMMARY: Photon-counting detectors (PCDs) represent a major milestone in the evolution of CT imaging. CT scanners using
PCD systems have already been shown to generate images with substantially greater spatial resolution, superior iodine contrast-
to-noise ratio, and reduced artifact compared with conventional energy-integrating detector–based systems. These benefits can
be achieved with considerably decreased radiation dose. Recent studies have focused on the advantages of PCD-CT scanners in
numerous anatomic regions, particularly the coronary and cerebral vasculature, pulmonary structures, and musculoskeletal imag-
ing. However, PCD-CT imaging is also anticipated to be a major advantage for head and neck imaging. In this paper, we review
current clinical applications of PCD-CT in head and neck imaging, with a focus on the temporal bone, facial bones, and paranasal
sinuses; minor arterial vasculature; and the spectral capabilities of PCD systems.

ABBREVIATIONS: CI ¼ cochlear implant; CNR ¼ contrast-to-noise ratio; EID ¼ energy-integrating detector; PCD ¼ photon-counting detector; SSCD ¼
superior semicircular canal dehiscence; VME ¼ virtual monoenergetic

Photon-counting detectors (PCDs) are an emerging technology
with substantial promise in neuroimaging.1 Conventional

energy-integrating detectors (EIDs) use a scintillating layer
that converts incident x-ray photons into visible light, and
then use photodiodes to record the light photons as electric
signal.2 This process has many limitations: EID systems have
dose inefficiency tied to the use of interpixel septae and lose
substantial signal related to low-energy photons.3

PCD systems, conversely, use a semiconductor to directly
convert x-ray photons into an electric signal, and do not
require the need to first convert x-rays photons into visible
light.4,5 In this process, PCDs uniformly weigh x-ray photons
of various energies, thereby providing greater signal to pho-
tons that make up the critical aspects of an image.6,7 As such,
the scanners do not require interpixel septae, which improve
filling factor and dose efficiency at small pixel size compared
with EID, enabling dose-efficient ultra-high-resolution imag-
ing.5,8-10 PCD systems also allow the detectors to sort the
incoming photons into numerous bins based on their energy.
Finally, PCDs are capable of spectral imaging, which can be
used to assess for the presence of thyroid cartilage invasion in
the setting of malignancy (Fig 1).

Together, these features allow PCD-CT scanners to offer
numerous benefits over EID-CT scanners, including increased
SNRs, superior spatial resolution, less noise, and decreased
dose.11-14 PCD-CT scanners also provide higher image con-
trast-to-noise ratio (CNR), especially for examinations with
iodinated contrast media.5 In addition, the use of lower kiloe-
lectron volt virtual monoenergetic images can also boost
CNR. These effects allow PCD-CT to use lower iodine con-
trast while maintaining the same CNR. Similarly, this benefit
can also be used to reduce radiation dose. There are other
properties of PCD-CT that enable dose reduction. The higher
sampling frequency with smaller detector cells in the high-
resolution mode allows use of stronger filters during the
image reconstruction process. This has been shown to reduce
radiation dose at matched spatial resolution, especially for high
resolution imaging tasks.10 In addition, other dose reduction
capabilities, such as spectral shaping with additional beam filter,
have also been demonstrated.

Although still considered a relatively new technology, PCD-
CT has already demonstrated benefits for both intracranial and
cervical CTA imaging, including reduction of metallic artifacts,
identification of spinal CSF-venous fistulas, identification of in-
tracranial aneurysms, and evaluation of in-stent restenosis.11,15-19

Here, we highlight the utility of PCD-CT for various types of
head and neck imaging, including evaluation of the temporal
bones and paranasal sinuses, visualization of minor head and
neck arterial vessels, and spectral imaging.
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TEMPORAL BONE
The temporal bone benefits greatly from imaging with PCD-
CT. The minute anatomic structures that traverse the temporal
bone are often best evaluated on oblique reconstructed planes,
e.g., parallel to the superior semicircular canal or along the
axes of the ossicles. Not surprisingly, much of the early

research on PCD-CT imaging has
focused on the temporal bone.

Multiple studies of temporal bone
imaging by using PCD-CT scanners
have shown that images can be obtained
with substantially greater spatial resolu-
tion.20 To date, most studies have used
Likert scales to show a statistical advant-
age of PCD-CT over EID-CT imaging.
Benson et al,21 for example, used this
methodology to show that reviewers
preferred PCD-CT images to view multi-
ple specific anatomic structures (e.g., the
round and oval windows, modiolus, and
interossicular joints) (P, .001). Hermans
et al22 similarly used a Likert scale to
demonstrate superiority of PCD-CT
images in the visualization of multiple
temporal bone structures. Already, fur-
ther studies by using this type of side-
by-side Likert methodology are likely
unnecessary, because the superiority
of PCD-CT images is so clearly self-
evident on even a cursory review.

Similar to other anatomic structures,
temporal bone imaging on PCD-CT
scanners can be performed with signifi-
cantly less dose and noise. Grunz et al,23

for example, achieved nearly 80% dose
reduction when images were matched
based on noise. The same study showed
that both low and intermediate radia-
tion dose images had significantly less
noise than their EID-CT scanner coun-
terparts. Zhou et al24 similarly found
that PCD-CT obtained temporal bone
images with significantly less noise.

Moving forward, it will be inter-
esting to see how the introduction of
PCD-CT into clinical practice will
impact the utilization of temporal bone
imaging. Characterizations of postopera-
tive changes are much better delineated
on PCD-CT images. Furthermore, many
of the tiny anatomic structures in the
region will be better visualized, or even
visualized for the first time. The so-called
tympanic segment of the chorda tym-
pani, which courses through the middle
ear between the malleus and incus, has
long been considered impossible or diffi-

cult to identify on CT (Fig 2).25 The distal portion of Jacobson’s
nerve, as it splays over the promontory, has similarly been invisible
on conventional imaging unless associated with a paraganglioma.
Both structures are now readily discernible on PCD-CT.

Our ability to diagnose and characterize pathologies will also
change. A recently completed study (currently under consideration

FIG 1. Utility of iodine map in detecting invasion of tracheal cartilage in metastatic mela-
noma. PCD-CT scan of the neck with contrast (A, W/L ¼�350/�40) and VNC image (B) show
a metastatic mass (short arrow in A) with no visible cartilage invasion. On corresponding io-
dine map image (C), there is involvement of the left first tracheal ring (arrow). Subsequent
follow-up image on an EID scanner (D) shows tumor progression at the site of the carti-
lage invasion with a fistula (arrow). VNC indicates virtual non-contrast. Figure courtesy of
Dr. Nitesh Shekrajka.

FIG 2. Visualization of the chorda tympani nerve on PCD-CT. Reformatted sagittal images of the
left temporal bone show the mastoid segment of the left facial nerve canal (asterisks). From this
arises the chorda tympani: first in its posterior canaliculus segment (solid arrow), and then its
tympanic segment in the middle ear (dashed arrows), where it transverses between the malleus
and incus. W/L¼ 1000/4000.
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for publication) found significant differences between images
from EID-CT and PCD-CT scanners in the diagnosis of superior
semicircular canal dehiscence (SSCD). Specifically, EID-CT scan-
ner images often underestimate the thickness of bone over the
superior semicircular canal and overestimate the incidence of
SSCD (Fig 3). The anatomic detail captured on PCD-CT imaging
will also allow radiologists to precisely assess the involvement of
various anatomic structures by different pathologic entities
including tumors, cholesteatomas, and labyrinthitis ossificans.

PCD-CT imaging is also a promising technology for cochlear
implant (CI) imaging. A recent study evaluated the performance
of virtual monoenergetic (VME) EID-CT images versus PCD-CT
in 2 temporal bone cadaveric specimens with CIs. The images
were assessed according to the visibility of interelectrode wire,
size of electrode contact, and diameter of halo artifacts. The visi-
bility of interelectrode wire sections was significantly higher
when reviewing PCD-CT images. PCD-CT images had larger di-
ameter measurements of the electrode contacts closer to the man-
ufacturer’s specifications for the CI electrode. The size of halo
artifacts surrounding the electrode contacts did not differ signifi-
cantly between the 2 imaging modalities.26

Unpublished data presented at the 2023 Eastern Neuro-
radiological Society conference comparing T3D (polyenergetic)

images and images at different mono-
energies (spectral images) in patients
with ear implants found that ultra-
high-resolution, quantum iterative
reconstruction algorithm T3D polye-
nergetic images were graded the best
by reviewers. An inherent disadvant-
age of the spectral mode is that mono-
energetic images are currently limited
to a slice thickness of 0.4mm, which is
thicker than the 0.2mm slice thickness
images provided by the T3D images. It
is worth noting that this limitation is
due to data transfer bottleneck of cur-
rent implementation rather than the
intrinsic limitation of the PCD tech-
nology. If the data transfer issue is
addressed in the future, 0.2 mm vir-
tual monoenergetic images would be
feasible.

Finally, PCD-CT could potentially
be used to characterize the spectral
properties of cholesteatoma utilizing 3
material decomposition as has been
previously done by using dual energy
EID-CT.27 Research at our institution
on Z effective value of cholesteatoma
to help differentiate it from noncholes-
teatomatous tissue is ongoing.

FACIAL BONES, SKULL BASE,
PARANASAL SINUSES
Compared with the temporal bone,
advantages of PCD-CT over EID-CT

imaging of the facial bones, skull base, and paranasal sinuses have
gone comparatively unheralded in the literature. Nevertheless,
the benefits of PCD-CT imaging are the same: the scanners can
produce higher resolution images at a lower radiation dose. Use
of tin prefiltration on a PCD can even more dramatically decrease
the radiation dose. Grunz et al,28 for example, found that ultra-
low radiation exposures of 0.08 mGy (calculated for a 16-cm
head phantom) were adequate for some inflammation-focused
paranasal sinus imaging. Rajendran et al,29 also by using a tin fil-
ter, were able to achieve a mean dose reduction of 67% when
imaging the paranasal sinuses.

The superiority of spatial resolution achieved by PCD-CT
scanners is particularly useful when assessing the smaller struc-
tures in the sinus and midface regions, e.g., the osteomeatal
units, anterior and posterior drainage pathways, facial foramina,
and pterygopalatine fossae (Fig 4). Imaging performed on PCD-
CT scanners shows superior visualization of numerous “critical”
anatomic structures, including the lesser palatine foramina, an-
terior ethmoidal artery canal, and nasomaxillary sutures.29

High-resolution 3D reformats of the facial bones are useful
when assessing for fractures in the setting of midface trauma.
The anatomic detail afforded by PCD-CT imaging allows for
more confident evaluation of the structures of the skull base

FIG 4. Comparison of PCD-CT to EID-CT in paranasal sinus imaging. Although both are useful for
the relatively larger anatomic structures of the paranasal sinuses, PCD-CT image (A) has substantially
greater spatial resolution at less radiation doses than EID-CT image (B). For example, the anterior eth-
moidal artery notch is seen much clearer on PCD-CT image (curved arrows). W/L¼ 575/3630.

FIG 3. PCD-CT in the evaluation of SSCD. Reformatted coronal EID-CT (A) and PCD-CT (B) images
are shown. EID-CT image is highly suggestive of SSCD. PCD-CT image, however, shows a tiny ridge of
bone overlying the SSCD (curved arrows on both). W/L¼ 1000/4000.
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(Fig 5). Indications such as CSF rhinorrhea should benefit from
the high-resolution imaging afforded by PCD-CT, including in
the evaluation of the integrity of structures such as the cribri-
form plate and fovea ethmoidalis.

Similar to imaging of the temporal bone, facial bone, skull
base, and paranasal sinus imaging could be affected by the prolif-
eration of PCD-CT scanners. For example, the improved ana-
tomic details captured by PCD systems could increase the
sensitivity of imaging to evidence of early tumoral spread or inva-
sive fungal sinusitis. Tiny facial bone fractures may also become
much more discernible on imaging. For now, however, these
prospects remain unproven. In our experience, PCD-CT images
seem superior to EID-CT images in facial bone imaging, though
the higher spatial resolution in this area may not dramatically
change most day-to-day clinical practices. Future studies will be

needed to assess how much, if any, benefit if derived by using
PCD-CT in imaging of facial bone pathologies.

HEAD AND NECK ARTERIAL VASCULATURE
PCD-CTA improves visualization and characterization of vas-
culature abnormalities compared with that possible with state-
of-the-art EID techniques. Many of the angiographic capabilities
of PCD-CT scanners are related to the large- and medium-sized
arteries of the cervical and intracranial arterial vasculature and
are beyond the scope of this article. In brief, however, authors
have already shown that PCD-CT is better able than EID-CT to
delineate extra- and intracranial arterial vasculature, with better
spatial resolution and decreased partial volume effects on MIP
images.30 Studies have also found that PCD systems are able to
achieve a higher intravasculature iodine contrast attenuation
and decreased beam hardening related to osseous structures of
the skull base and cervical spine.8,31

Recently, Farnsworth et al32 reported on the use of PCD-CT
images to evaluate orbital arteries, in which the authors showed a
considerable level of angiographic anatomic detail. Among its im-
pressive findings, the study demonstrated clear delineation of the
central retinal artery, long and short posterior ciliary arteries, an-
terior ciliary arteries, supraorbital artery, arterial supplies of the
extra-ocular muscles, superior and inferior medial palpebral
arteries, and the anterior and posterior ethmoidal arteries. Our
own efforts to replicate such high-resolution arterial imaging
with PCD-CT have been successful (Fig 6). Similarly, we have
been able to evaluate numerous tiny arterial vessels in multiple
face and skull base foramina (Fig 7). However, the central retinal
artery is still inconsistently visualized on PCD due to its diminu-
tive caliber and its nonvisualization does not automatically infer
pathology.

Characterization of tiny head and neck vessels could poten-
tially be clinically useful. As Farnsworth et al32 noted, diagnoses
made on high-resolution PCD-CT images might obviate the
need for interventional angiography. Improved identification of
collateral pathways could modify the treatment of certain vascu-
lar conditions. In addition, images obtained on conventional
EID-CT scanners tend to overestimate the degree of arterial ste-
nosis caused by calcified atherosclerotic plaques due to bloom-
ing artifact (Fig 8).33 Thus, PCD-CT images will be better able

FIG 6. Evaluation of a central retinal artery on PCD-CT. Coronal CTA
image of the midleft orbit from a PCD-CT scanner demonstrates both
the central retinal artery in the distal optic nerve (solid arrow) and
branches of the posterior ciliary artery (dashed arrows). W/L¼ 219/48.

FIG 5. Example of an adenoid cystic carcinoma with invasion of the skull base in a 69-year-old man. A large soft tissue mass was seen centered
in the right parotid gland (asterisk). Coronal bone kernel images demonstrated invasion into the right temporal bone with involvement of the
external auditory canal (arrows), abutting the tympanic membrane (dashed arrows), and abutting the handle of the malleus. A ¼ soft tissue
kernel, W/L¼ 51/337. B and C¼ bone kernel, W/L¼ 1000/4000.
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to predict the degree of atherosclerotic stenoses in these vessels
accurately. Finally, identification of head and neck vasculature
could conceivably help radiologists more accurately recognize
pathologic processes such as perineural tumoral spread by
showing mass effect upon or direct invasion of minor adjacent
arteries.

PCD-CT does not come without challenges. There are
some nonideal physical aspects of PCD-CT that could impact
its performance, such as pulse pileup, charge sharing, and k-
escape.5 In addition, the ultra-high resolution could result in
high image noise, which has to be appropriately addressed
with denoising algorithms to take full benefit of the high-reso-
lution capabilities. From a clinical workflow perspective, the
large amount of data and different image types generated by
PCD-CT also require appropriate data management and com-
patibility with downstream image processing software.

CONCLUSIONS
PCD systems have the potential to radically transform head and
neck imaging. CT scanners by using PCDs generate images with

substantially superior spatial resolution, improved iodine CNR,

and reduced artifact, all at a lower radiation dose. As this technol-
ogy continues to expand into clinical practices, the onus is on clini-

cians to adapt to this emerging technology. This will require greater

knowledge of minute anatomic structures, some of which were pre-
viously unidentifiable on conventional EID systems, awareness of

the spectral capabilities of PCD-CT scanners, and a commitment to

optimize the technology to further reduce radiation doses.

Disclosure forms provided by the authors are available with the full text and
PDF of this article at www.ajnr.org.
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