Abstract
BACKGROUND AND PURPOSE: Distinct molecular subgroups of pediatric medulloblastoma confer important differences in prognosis and therapy. Currently, tissue sampling is the only method to obtain information for classification. Our goal was to develop and validate radiomic and machine learning approaches for predicting molecular subgroups of pediatric medulloblastoma.
MATERIALS AND METHODS: In this multi-institutional retrospective study, we evaluated MR imaging datasets of 109 pediatric patients with medulloblastoma from 3 children's hospitals from January 2001 to January 2014. A computational framework was developed to extract MR imaging–based radiomic features from tumor segmentations, and we tested 2 predictive models: a double 10-fold cross-validation using a combined dataset consisting of all 3 patient cohorts and a 3-dataset cross-validation, in which training was performed on 2 cohorts and testing was performed on the third independent cohort. We used the Wilcoxon rank sum test for feature selection with assessment of area under the receiver operating characteristic curve to evaluate model performance.
RESULTS: Of 590 MR imaging–derived radiomic features, including intensity-based histograms, tumor edge-sharpness, Gabor features, and local area integral invariant features, extracted from imaging-derived tumor segmentations, tumor edge-sharpness was most useful for predicting sonic hedgehog and group 4 tumors. Receiver operating characteristic analysis revealed superior performance of the double 10-fold cross-validation model for predicting sonic hedgehog, group 3, and group 4 tumors when using combined T1- and T2-weighted images (area under the curve = 0.79, 0.70, and 0.83, respectively). With the independent 3-dataset cross-validation strategy, select radiomic features were predictive of sonic hedgehog (area under the curve = 0.70–0.73) and group 4 (area under the curve = 0.76–0.80) medulloblastoma.
CONCLUSIONS: This study provides proof-of-concept results for the application of radiomic and machine learning approaches to a multi-institutional dataset for the prediction of medulloblastoma subgroups.
ABBREVIATIONS:
- AUC
- area under the curve
- LAII
- local area integral invariant
- MB
- medulloblastoma
- ROC
- receiver operating characteristic
- SHH
- sonic hedgehog
- SVM
- support vector machines
- WNT
- wingless type
Footnotes
Michael Iv and Mu Zhou are co-first authors and contributed equally to this article.
Kristen W. Yeom and Olivier Gevaert are co-senior and co-corresponding authors and contributed equally to this article.
Disclosures: Paul G. Fisher—UNRELATED: Employment: Elsevier Publishing, Comments: stipend of $22,500 per year for work as Associate Editor for the Journal of Pediatrics; Grants/Grants Pending: National Institutes of Health, Comments: salary support from the National Cancer Institute (Pediatric Brain Tumor Consortium) and from the National Human Genome Research Institute (Undiagnosed Diseases Consortium).* Vijay Ramaswamy—RELATED: Grant: collaborative ependymoma research network. Tina Young Poussaint—UNRELATED: Grants/Grants Pending: National Institutes of Health, Pediatric Brain Tumor Consortium Neuroimaging Center.* Olivier Gevaert—RELATED: Grant: National Institutes of Biomedical Imaging and Bioengineering, Comments: Research reported in this publication was supported by the National Institute of Biomedical Imaging and Bioengineering of the National Institutes of Health under Award Number R01EB020527. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health*; UNRELATED: Grants/Grants Pending: National Institutes of Health, Comments: support from various grants from the National Institutes of Health, and foundation grant from the Innovation in Cancer Informatics fund.* *Money paid to the institution.
Research reported in this publication was supported by the National Institute of Biomedical Imaging and Bioengineering of the National Institutes of Health under Award Number R01EB020527. V.R. was supported by the collaborative ependymoma research network.
The content of this article is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
- © 2018 by American Journal of Neuroradiology
Indicates open access to non-subscribers at www.ajnr.org