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ORIGINAL RESEARCH
PEDIATRICS

Advanced ADC Histogram, Perfusion, and Permeability Metrics
Show an Association with Survival and Pseudoprogression in
Newly Diagnosed Diffuse Intrinsic Pontine Glioma: A Report

from the Pediatric Brain Tumor Consortium
S. Vajapeyam, D. Brown, C. Billups, Z. Patay, G. Vezina, M.S. Shiroishi, M. Law, P. Baxter, A. Onar-Thomas,

J.R. Fangusaro, I.J. Dunkel, and T.Y. Poussaint

ABSTRACT

BACKGROUND AND PURPOSE: Diffuse intrinsic pontine glioma is a lethal childhood brain cancer with dismal prognosis and MR imaging
is the primary methodology used for diagnosis and monitoring. Our aim was to determine whether advanced diffusion, perfusion, and per-
meability MR imaging metrics predict survival and pseudoprogression in children with newly diagnosed diffuse intrinsic pontine glioma.

MATERIALS ANDMETHODS: A clinical trial using the poly (adenosine diphosphate ribose) polymerase (PARP) inhibitor veliparib con-
currently with radiation therapy, followed by maintenance therapy with veliparib + temozolomide, in children with diffuse intrinsic
pontine glioma was conducted by the Pediatric Brain Tumor Consortium. Standard MR imaging, DWI, dynamic contrast-enhanced
perfusion, and DSC perfusion were performed at baseline and approximately every 2 months throughout treatment. ADC histogram
metrics of T2-weighted FLAIR and enhancing tumor volume, dynamic contrast-enhanced permeability metrics for enhancing tumors,
and tumor relative CBV from DSC perfusion MR imaging were calculated. Baseline values, post-radiation therapy changes, and longi-
tudinal trends for all metrics were evaluated for associations with survival and pseudoprogression.

RESULTS: Fifty children were evaluable for survival analyses. Higher baseline relative CBV was associated with shorter progression-free
survival (P¼ .02, Q¼ 0.089) and overall survival (P¼ .006, Q¼ 0.055). Associations of higher baseline mean transfer constant from the
blood plasma into the extravascular extracellular space with shorter progression-free survival (P¼ .03, Q¼ 0.105) and overall survival
(P¼ .03, Q¼ 0.102) trended toward significance. An increase in relative CBV with time was associated with shorter progression-free sur-
vival (P, .001, Q, 0.001) and overall survival (P¼ .004, Q¼ 0.043). Associations of longitudinal mean extravascular extracellular volume
fraction with progression-free survival (P¼ .03, Q¼ 0.104) and overall survival (P¼ .03, Q¼ 0.105) and maximum transfer constant from
the blood plasma into the extravascular extracellular space with progression-free survival (P¼ .03, Q¼ 0.102) trended toward signifi-
cance. Greater increases with time were associated with worse outcomes. True radiologic progression showed greater post-radiation
therapy decreases in mode_ADC_FLAIR compared with pseudoprogression (means,�268.15 versus�26.11, P¼ .01.)

CONCLUSIONS: ADC histogram, perfusion, and permeability MR imaging metrics in diffuse intrinsic pontine glioma are useful in
predicting survival and pseudoprogression.

ABBREVIATIONS: DCE ¼ dynamic contrast-enhanced; DIPG ¼ diffuse intrinsic pontine glioma; Kep ¼ rate constant from extravascular extracellular space
back into blood plasma; Ktrans ¼ transfer constant from blood plasma into extravascular extracellular space; OS ¼ overall survival; PBTC ¼ Pediatric Brain
Tumor Consortium; PFS ¼ progression-free survival; rCBV ¼ relative CBV; RT ¼ radiation therapy; TMZ ¼ temozolomide; ve ¼ extravascular extracellular vol-
ume fraction; vp ¼ blood-plasma volume fraction
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D iffuse intrinsic pontine gliomas (DIPGs) represent 80% of all
brain stem gliomas, and brain stem tumors constitute approx-

imately 10%–15% of pediatric CNS tumors.
1

The prognosis for
DIPG has been uniformly dismal, with .90% of patients suc-
cumbing to the disease within 2 years of diagnosis, with a median
overall survival of 9months.

2

Radiation therapy (RT) has shown
transient improvement of neurologic symptoms and marginal sur-
vival benefit.

3

In this study, we assessed associations between survival and
imaging metrics derived from advanced diffusion, perfusion, and
permeability MR imaging data in a cohort of patients with newly
diagnosed DIPG treated with veliparib concurrent with RT, fol-
lowed by maintenance therapy of veliparib plus temozolomide
(TMZ) treated in a Pediatric Brain Tumor Consortium (PBTC)
Phase I/II trial. Poly (adenosine diphospate ribose) polymerase
(PARP) inhibitors such as veliparib have been shown to over-
come TMZ resistance while also increasing radiosensitivity.4,5

Advanced ADC histogram metrics have been shown to correlate
with survival6 in DIPG, whereas perfusion and permeability met-
rics have shown associations with survival as well as pseudoprog-
ression7-9 in pediatric and adult gliomas. We therefore explored
the utility of these imaging metrics to predict pseudoprogression
versus early true progression.

MATERIALS AND METHODS
Patients and Treatment Protocol
Fifty-three children (33 girls, 20 boys; median age 6.6 years;
range, 2.5–12.9 years) with newly diagnosed DIPGs were enrolled
in a Phase II PBTC trial (PBTC-033, NCT01514201) to determine
the efficacy of administering veliparib concurrently with radia-
tion therapy, followed by maintenance therapy with veliparib and
temozolomide (TMZ). All patients received photon radiation
with a planned target volume of 5400 cGy administered in 30
fractions of 180 cGy and a 50-mg/m2 dose of veliparib, followed
by maintenance therapy with veliparib at 25mg/m2 two times a
day and TMZ at 135mg/m2/day for 5 days every 28days.

Imaging and Image Analysis
MR Imaging Evaluation. Standard MR imaging (which included
axial T2-weighted FLAIR and axial pre- and postcontrast T1-
weighted images) was performed within 2weeks before registra-
tion; at the end of radiation therapy (week 10); within 1week
before courses 3, 5, and 8 of maintenance therapy; and at the end
of treatment. Images were transferred to a Vitrea workstation
(Vital Images, Minnetonka, Minnesota), and 3D FLAIR and
enhancing tumor volumes were calculated from the axial T2-
weighted FLAIR and axial postcontrast T1-weighted images,
respectively. DSC perfusion, dynamic contrast-enhanced (DCE)
permeability imaging, and DTI were performed at the same time
points as standard MR imaging through week 26 (6months from
the initiation of treatment).

DCE Permeability Imaging and Analysis. All patients underwent
a DCE-MR imaging protocol as follows: 1) variable flip angle
echo-spoiled gradient-echo T1-mapping sequences using flip
angles of 15°, 10°, 5°, and 2°; TR¼ 5 seconds; TE ¼ minimum;

FOV¼ 240mm; section thickness¼ 5mm; 2) A 3D fast gradi-
ent-echo DCE-MR imaging axial sequence of 50 phases,
7 seconds apart, with flip angle¼ 15°, TR¼ 4 seconds, TE ¼
minimum. FOV, section thickness, and scan locations were
identical to those in the T1-mapping sequences to allow the
use of the T1-maps to calculate permeability metrics. A bolus
of gadobutrol (0.05mmol/kg of body weight) was injected
20 seconds after the start of scanning.

DCE-MR images were transferred to a DynaCAD worksta-
tion (https://www.invivocorp.com/solutions; Invivo, Gainesville,
Florida) for automated processing using OmniLook software.
Voxelwise T1-maps were generated from the variable flip angle
images as described in Fram et al,10 and the 2-compartment
extended Tofts model11 was used to generate maps of the phar-
macokinetic parameters, namely transfer constant from the
blood plasma into the extravascular extracellular space (Ktrans),
rate constant from extravascular extracellular space back into
blood plasma (kep), extravascular extracellular volume fraction
(ve), and blood plasma volume fraction (vp). ROIs were drawn
on each section of tumor around contrast-enhancing portions of
the tumor by an imaging data analyst or by a PhD scientist and
verified by a Certificate of Added Qualification–certified neuro-
radiologist, and the mean (over voxels) and SDs of each of the
variables were recorded for statistical analysis.

DSC Perfusion Imaging and Analysis. An axial 2D T2* gradient
recalled-echo EPI sequence was used with TR= 2000ms, TE¼
23ms, section thickness¼ 5.0mm with a 2-mm gap, flip angle¼
60°, and 50–60 time points. With the bolus for the DCE-MR
imaging serving as preloading, another bolus injection of
0.05mmol/kg body weight of gadobutrol was administered
20 seconds after start of scanning, followed by a 10-mL saline
flush. Corrected CBV maps12 were generated off-line and nor-
malized using an ROI selected in normal-appearing white matter.
A 2D ROI corresponding to the area of greatest enhancement in
the tumor was selected in the normalized relative CBV (rCBV)
map and used as the rCBV of the tumor.

DTI Acquisition and ADC Histogram Analysis. DTI data were
acquired with the following acquisition parameters on a 3T scan-
ner: section thickness ¼ 2.2mm, TR ¼ 8800ms, TE ¼ 88ms,
FOV ¼ 220mm, b-value ¼ 1000 s/mm2, 35 directions. Due to
their superior anatomic contrast, axial B0 images from the DTI
sequence were registered to the axial FLAIR images using the
mutual information algorithm in FSL (www.fmrib.ox.ac.uk/
fsl),13,14 and the same transformation matrix was used on the
ADC maps to register them to the FLAIR images. Axial postcon-
trast images were also similarly registered to FLAIR images. 3D
ROIs comprising the tumor FLAIR volume and the postcontrast
enhancing tumor volume were automatically generated using the
thresholding feature in Fiji (https://imagej.net/Fiji/Downloads).15

The ADC values of the voxels in FLAIR and enhancing volumes
were then used to generate the ADC_FLAIR and ADC_enhancing
volumes, respectively. These volumes were thresholded using a uni-
form range of 600–2600 � 10�6mm2/s to automatically exclude
cysts, necrosis, and hemorrhage, and corresponding ADC_FLAIR
and ADC_enhancing histograms were generated. Histogram
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metrics used for statistical analysis were the number of peaks
(unimodal or bimodal), mean, SD, skewness, and kurtosis of these
histograms. In the case of tumors showing bimodal ADC histo-
grams, the lower peak was measured for mean and SD, and skew-
ness and kurtosis were not recorded.

For each of the imaging metrics, the baseline value, the post-
RT change (defined as the value at the 10-week post-RT scan
minus the baseline value), and the time-dependent longitudinal
change in the metric during the course of treatment were exam-
ined for associations with progression-free survival (PFS), overall
survival (OS), and pseudoprogression.

For patients suspected of having pseudoprogression during
the first 6months of therapy, the treating physician had the
option of allowing the patient to continue protocol treatment and
repeat the disease assessment in 4–6weeks. Pseudoprogression
was defined as tumors that met the $25% progressive disease
threshold by bidimensional MR imaging area but improved
spontaneously to a size of stable disease or smaller compared
with initial imaging on subsequent scans. Provided that the
patient did not show clinical deterioration consistent with tumor
progression and subsequent MR imaging demonstrated tumor
regression or stable disease, the patient could remain on treat-
ment. If the repeat MR imaging after 4–6weeks showed true radi-
ographic disease progression, rather than pseudoprogression,
then the date of progression was the date of the initial MR imag-
ing, not the follow-up scan.

Statistical Methods
To examine associations between imaging parameters and out-
come, we used only eligible and evaluable Phase II patients. OS
was defined as the time interval from the date of treatment to the
date of death from any cause or to the date of last follow-up. PFS
was defined as the time interval from the date of treatment to the
earliest date of failure (disease progression or death from any
cause) for patients who failed or to the date of last contact for
patients who had not failed.

Exact Wilcoxon rank sum tests were used to compare distri-
butions of continuous imaging metrics among patient groups.
For each of the imaging metrics, the baseline value, the post-RT
change (defined as the value at the 10-week post-RT scan minus
the baseline value), and the time-dependent longitudinal change
in the metrics during the course of treatment were examined for
associations with outcome (PFS and OS) using Cox regression
models. Overall survival was compared among those with pseu-
doprogression versus those with true early progression using an
exact log-rank test. For exploratory analyses examining associa-
tions with outcome (OS and PFS), unadjusted P values are
reported along with Q values based on the false discovery rate,
given the large number of statistical tests performed. These were
calculated using the fdrtool package in R (http://www.r-project.
org).16,17 Q values less than a fixed threshold of 0.1 were consid-
ered significant.

RESULTS
Patients
Of 53 patients enrolled in the study, 1 patient withdrew before
therapy and 2 patients received ,1 full dose of veliparib, leaving

50 patients evaluable for survival analyses. Forty-three patients
died, and 45 experienced a PFS event. Seven patients had sus-
pected pseudoprogression confirmed by repeat imaging and were
compared with 20 patients identified as having true progression
in the first 6months of treatment. None of the patients had intra-
tumoral hemorrhage, and no biopsy was performed.

MR Imaging Evaluation
Most the tumors were T1-hypointense and T2-hyperintense at
presentation. Larger baseline tumor volumes on FLAIR were
associated with worse PFS (P¼ .01, Q¼ 0.079) but not OS.
Larger enhancing tumor volumes at baseline were associated with
worse OS (P¼ .005, Q¼ 0.047) and PFS (P¼ .01, Q¼ 0.070).
Larger percentage increases in FLAIR tumor volume with RT
correlated with worse PFS (P¼ .01, Q¼ 0.084). Larger increases
in enhancing tumor volume with RT correlated with worse PFS
(P¼ .01, Q¼ 0.078). Volumetric analysis showed no difference
between pseudoprogression and true early progression groups.

DCE Permeability
Associations of higher baseline mean Ktrans (n¼ 22) and
shorter OS (P¼ .03, Q¼ 0.102) and PFS (P¼ .03, Q¼ 0.105)
trended toward significance. When analyzed as continuous
time-dependent variables, associations of mean ve with PFS
(P¼ .03, Q¼ 0.104) and OS (P¼ .03, Q¼ 0.105) and maximum
Ktrans with PFS (P¼ .03, Q¼ 0.102) trended toward signifi-
cance. Greater increases with time were associated with worse
outcomes (Fig 1). Permeability metrics showed no difference
between pseudoprogression and true early progression groups.

DSC Perfusion
Higher baseline rCBV was associated with shorter PFS (P¼ .02,
Q¼ 0.089) and OS (P¼ .006, Q¼ 0.055). When analyzed as a
time-dependent variable, an increase in rCBV with time was
associated with shorter OS (P¼ .004, Q¼ 0.043) and PFS
(P, .001, Q, 0.001). Post-RT change in rCBV was not associ-
ated with survival or pseudoprogression.

ADC Histogram Analyses
Associations of higher baseline mode_ADC_enhancing with lon-
ger PFS (P¼ .03, Q¼ 0.106) and of greater post-RT increase in
skewness_ADC_FLAIR with longer PFS (P¼ .03, Q¼ 0.102)
trended toward significance. Mode_ADC_FLAIR showed a
greater decrease after RT for true early progression compared
with tumors that showed pseudoprogression (means, �268.15
versus�26.11, P¼ .01) (Fig 2).

A complete set of results of all relevant statistical tests can be
found in the On-line Tables 1–7.

DISCUSSION
While some early studies concluded that standard imaging
could not predict survival in DIPG,18 several more recent stud-
ies have shown metrics derived from standard imaging, such as
baseline and post-RT changes on FLAIR, enhancing tumor vol-
ume, and the presence or absence of enhancement at baseline,
are correlated with survival.19-21 Our results showing associa-
tions between larger baseline FLAIR and enhancing tumor
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volumes and survival are further confirmation of the role of
standard MR imaging in predicting survival.

Advanced MR imaging techniques such as DSC and DCE-
MR perfusion imaging,22-24 arterial spin-labeling,8 diffusion
imaging including ADC histograms and functional diffusion
maps,6,22,25 MR spectroscopy,26 and PET27 have proved increas-
ingly useful in characterizing the heterogeneity in DIPG for pre-
dicting survival and may even provide insight into molecular
subgroups.28,29

Our DCE-MR imaging findings show that increased baseline
mean Ktrans was associated with shorter survival, which again
suggests that greater perfusion in enhancing tumors indicates a
worse prognosis. The association of increased ve and shorter
survival found in this study is consistent with an earlier report
linking higher ve to higher grade tumors in a pediatric popula-
tion.30 Ve is the extravascular extracellular volume fraction of
the tissue and, thus, is dependent on the cellularity as well as the
vascularity of the tumor. Because both cellularity and vascular-
ity change with treatment, our findings suggest that the rate of

change of ve during the course of treatment could be used to
monitor the efficacy of treatment: A rapid increase in ve may
indicate an ineffective treatment regimen.

Our findings of higher baseline rCBV as well as an increase of
rCBV during treatment being associated with shorter survival is
in agreement with earlier findings reported by Hipp et al24 as well
as other studies showing that enhancement at baseline and across
time is associated with a worse prognosis.20,21 Sedlacik et al,23

however, found that tumors with a higher baseline cerebral blood
flow measured by DSC and a higher increase in these metrics
through RT had a longer PFS. Similarly, Calmon et al8 found that
higher rCBV measured immediately following RT correlated
with longer PFS. Higher baseline rCBV has, however, been linked
to increased angiogenesis31 and a biopsy-confirmed higher grade
in DIPG.32 The lack of consistent DSC perfusion findings in
DIPG is likely due to differences in acquisition and postprocess-
ing parameters, susceptibility artifacts associated with the loca-
tion of the tumor in the brain stem, and also the challenges of
choosing a representative 2D tumor ROI, given the tumor

FIG 1. Large increase with time in rCBV and mean ve in a 6.6-year-old female short-term survivor (OS¼ 124 days) with DIPG. Increase in rCBV
with time was associated with shorter PFS (P¼ .004, Q¼ 0.043) and OS (P, .001, Q, 0.001). An increase in mean ve was marginally associated
with shorter PFS (P¼ .028,Q¼ 0.104) and OS (P¼ .030,Q¼ 0.105).
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heterogeneity seen in DIPG. In addition, it has been shown that
there are rapid changes in cerebral blood volume and flow in
DIPG both during RT and also immediately following RT.23 The
time point when DSC perfusion is measured during therapy is
therefore critical and may also explain the divergent findings in
the literature.

A greater post-RT increase in skewness_ADC_FLAIR implies
a larger post-RT drop in ADC and was associated with longer
survival in our study, and correlates with published data from a
large cohort.6 The drop in ADC could be due to a decrease in
vasogenic edema, indicating that the radiation therapy is
effective.6

We report on 7/50 (14%) cases of pseudoprogression in this
DIPG cohort. A post-RT decrease in mode_ADC_FLAIR was sig-
nificantly lower in those showing pseudoprogression compared
with those who went on to show true early progression in our
study. While pseudoprogression is well-documented in adult gli-
blastomas treated with RT + TMZ, typically seen within the first
3months after radiation,33 there are very few reports on DIPG.
Chassot et al34 reported 4/22 (18%) cases of pseudoprogression in
children with DIPG treated with RT + TMZ and found no differ-
ence in overall survival between pseudoprogression and true pro-
gression cases. Carceller et al35 reported 6/44 (13.6%) cases of
pseudoprogression in a DIPG cohort treated with various differ-
ent treatment regimens and found no difference in overall sur-
vival between pseudoprogression and true progression groups.
We also observed no evidence of a significant difference in overall
survival among our patients with pseudoprogression versus those
with true early progression (P¼ .75). In a peptide-based vaccine
DIPG trial, Ceschin et al36 found that parametric response maps
of ADC were able to retrospectively identify 4/21 (19%) cases of

pseudoprogression and reported bet-
ter overall survival in these cases.
More recently, Calmon et al37 re-
ported 19/43 (44%) cases of pseudo-
progression in a DIPG cohort treated
with RT along with various concur-
rent chemotherapy agents in 37 of
the cases. There are thus very few
cases of pseudoprogression reported
in the literature, confounded by the
fact that they have all undergone
varying treatment regimens. In addi-
tion, the definition of pseudoprogres-
sion is inconsistent across these
reports and affects the frequency of
the occurrence of pseudoprogression
reported.

While most previous studies have
retrospectively compared diffusion and
perfusion properties of pseudoprogres-
sion and true progression groups at the
time of radiologic progression,7,9,36,38,39

our results show post-RT changes in
ADC histograms that precede radio-
logic progression and could be used to
predict pseudoprogression. A recent

report by Calmon et al37 found differences in post-RT changes in
DSC perfusion between pseudoprogression and true progression
groups, confirming the usefulness of looking at post-RT changes in
DIPG as a predictive radiologic marker of pseudoprogression.
Because pseudoprogression is most often seen within the first
3months after RT, it is plausible that radiosensitivity and response
to radiation affect the incidence of pseudoprogression.

Our understanding of DIPG has changed in the past few
years with the advent of biopsy for DIPG and the subsequent
discovery of novel histone and genetic mutations.29 This study
preceded many of these findings and could benefit from genetic
and molecular information available from biopsy data. The
methodology outlined in this study, particularly the 3D volu-
metric ADC histogram analyses, may be particularly well-suited
to study these tumors. Future work will focus on correlating
these advanced diffusion, perfusion, and permeability metrics
with molecular signatures.

CONCLUSIONS
The data from this study demonstrate that higher baseline
FLAIR and enhancing tumor volumes, rCBV, and mean Ktrans

are all associated with shorter survival in newly diagnosed
DIPGs treated with veliparib given concurrently with focal
radiation, followed by maintenance therapy of veliparib +
TMZ in children with DIPG. Smaller percentage increases in
FLAIR tumor volume, smaller increases in enhancing tumor
volume, smaller increases in skewness of ADC_FLAIR, and
larger decreases of mean_ADC_enhancing were associated
with longer survival. Higher increases with time in rCBV and
ve in the course of treatment were associated with shorter sur-
vival. Tumors with pseudoprogression had a smaller post-RT

FIG 2. Post-RT change in mode_ADC_FLAIR for pseudoprogression cases on the left and true early
progression on the right. The striking difference between groups is evident. Note the sharp drop
between baseline and post-RT scans in the mode of ADC_FLAIR for true early progression cases on
the right compared with the pseudoprogression cases on the left (means, �268.15 versus �26.11;
P¼ .0099). All ADC values are in 10� 6 mm2/s.
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decrease in mode_ADC_FLAIR than those that had true early
progressive disease. These results incorporating advanced dif-
fusion, perfusion, and permeability metrics and the association
with survival and pseudoprogression will need to be validated
in larger prospective clinical trials.
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