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Supplementary Material  
 

Supplementary Methods 

Data pre-processing 

The metric of interest in this study was CTh, which we calculated as two-dimensional cortical 

surface maps using the fully-automated reconstruction pipeline recon-all from the software 

FreeSurfer 1–3. To facilitate data handling and visualization, we converted these data to the 

CIFTI format using the Ciftify package 4, which is based on pre-processing strategies from the 

Human Connectome Project (HCP) 5,6. The main output from this pre-processing strategy was 

a single file for each subject estimating CTh at each of 32k data points (“vertices”) per 

hemisphere (Fig. 1A). 

 

Parcellation-based estimation of individual atrophy  

The idea of the here-proposed MAP method is to rate parcelled CTh data for single patients 

with respect to HC data to estimate signs of atrophy (and hypertrophy). Importantly, given we 

wanted to probe the utility of MAP using externally acquired reference data, we included HC 

data from the CamCAN data base into our investigations (see below). Fig. 1 shows the details 

of the procedure. In brief, we start by parcellating the CTh map for each individual patient (Fig. 

1A) into 1000 roughly equally sized “patches” or “mosaics” using a published cortical atlas 7 



(Fig. 1B). Next, we calculated z-scores for each patch and subject with respect to age-/sex-

matched control groups (see next section), which we then converted into statistical p-maps 

using non-parametric permutation testing such that the resulting p-maps were corrected for the 

family-wise error rate (FWER). Note that we repeated this procedure for both ends of the 

thickness spectrum, such that we had two pFWER maps reflecting significant “thinning” 

(suggestive of atrophy) and “thickening” (suggestive of hypertrophy), which can be displayed 

in one single image (Fig. 1C). We set the alpha-level below which we considered patches 

significantly different to pFWER <= 0.05. Permutation testing was performed within Matlab 

R2022b (The MathWorks, Natick, MA, USA), whereas the exact details have been published 

before  8–11. MAP allows to estimate cortical disease burden as a single (normalized) scalar, 

which is simply the fraction of all “significantly thin (/thick) patches” with respect to all N = 

1000 patches. This “thin-(/thick-)-patch-fraction” is the metric investigated in this study. Notice 

that unlike raw CTh values, the TPF is an estimate of the topographical expansion of cortical 

disease burden: This may be illustrated with an example: Let’s take an imaginative patient with 

atrophy only at one localized “patch” – for simplicity, cortical thinning by exactly 1 mm. Let’s 

also imagine another patient, with localized atrophy at two “patches”, 0.5 mm at each patch. 

Overall mean CTh will be the same for these two patients. However, the TPF of patient 2 will 

be twice that of patient 1. Therefore, TPF – unlike raw CTh – is sensitive to topographical 

expansion. In contrast, let’s imagine that for patient 1, at a potential follow up, atrophy at the 

affected patch will further decrease, e.g., by 2 mm. Overall CTh will decrease, the TPF however 

not, since it is a binary criterion. A higher TPF indicates that more of the cortical surface is 

affected, lower raw CTh can also indicate further atrophy at one and the same cortical location.  

 

Definition of reference groups 

The MAP method rates data patch-wise for individual subjects with respect to age-/sex matched 

HC groups. As suggested in the original paper 9, we combined HC data from our locally 

collected cohort in Munich and the CamCAN repository. For each given subject of age X, the 

reference group was selected individually and defined as all HCs from the combined 

Munich/CamCAN data set aged between [X–2; X + 2], separately for males and females. For 

example, the reference group for a 40-year-old female MS patient comprises all females 

between 38 and 42 years from the collapsed Munich / CamCAN data set. This approach was 

shown to successfully correct for confounding effects of age and gender in the original 

publication. 

 



Definition of super-ROIs 

The primary outcome-measure of MAP is the TPF, which is an estimate of whole-brain cortical 

disease burden. However, it also allows for regional estimation of disease burden 10. For 

example, instead of calculating the fraction of significantly thin patches across the entire cortex, 

one can only consider the TPF from a certain lobe or brain area (Fig. 5B), such as the motor 

(red), frontal (purple), parietal (yellow), insular (light blue), temporal (green) and visual (dark 

blue) cortices. One way to estimate such “super-ROIs” is by overlaying the here-used high-

resolution parcellation scheme (N = 1000) on the Desikan-Killiany atlas 12, which provides a 

coarse but anatomically-labelled surface-based parcellation scheme of N = 34 parcels per 

hemisphere. With this information, estimates of atrophy (hypertrophy) can be individually and 

regionally displayed, e.g. using spider plots, such in Fig. 5C. Following this strategy, the total 

number of patches per super-ROI were as follows: 1) motor: Npatches = 140, 2) frontal: Npatches = 

214), 3) parietal: Npatches = 187, 4) insular: Npatches = 54, 5) temporal: Npatches = 151), and 6) 

visual: Npatches = 140. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



Supplementary Figure 1 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

SUPPLEMENTARY FIG. 1: We compared the differences in correlation coefficients 

between the EDSS score and the mosaic approach (MAP) vs. the EDSS and the standard 

approach using bootstrapping. This histogram shows the observed differences computed on 999 

bootstrap replicates [Dr*]. Dashed blue lines show the empirical 95% confidence interval (CI). 

Note that the CI does not include Dr* = 0.00 which suggests a significant difference between 

the two approach’s performances 
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Supplementary Figure 2 
 

 
SUPPLEMENTARY FIG. 2. To estimate effects of the different origins of the healthy control 

groups (HC), we compared quantiles (Q) between TUM-HC and TUM-MS: TPF fractions were 

consistently higher in MS (notice deviation of observed Q-scores towards MS in (A) and 

elevation of MS Q-ranks vs. HC Q-ranks in QQ-plot in (B)). Moreover, we calculated the Q-

scores for the 50%, 80% and 95% quantiles in the HC group and calculated the corresponding 

Q-ranks in the MS group (C). Additionally, we provide single-subject examples of TPF brain 

maps for each quantile.  
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Supplementary Table 1 

Supplementary Table 1. Statistical details of the validation procedures for the here-proposed 

biomarker, the “mosaic approach” (parcelled CTh rated with respect to a control group), to for 

individual assessment of atrophy, and comparisons with the “standard approach”, i.e. 

unparcelled CTh. 

 

Statistics are provided for the main effect the respective independent variable between the MS 

patients / HC groups in a one-way ANOVA omnibus test, which was corrected for confounding 

effects of age, sex, and lesion volume (except for the association with “lesion volme”). When 

the overall ANOVA omnibus test was significant, we proceeded with post-hoc testing to identify 

significant pairwise contrasts using Tukey’s HSD tests, which we provide in this table (we 

report only significant contrasts; notice that the resulting p-values in Tukey’s HSD tests are 

corrected for family-wise error rate, which we indicate as “padj”).  

Abbreviations/Symbols: adj = adjusted, ANOVA = analysis of variance, CIS = clinically 

isolated syndrome, CTh = cortical thickness, DOF = degrees of freedom, EDSS = Expanded 

Disability Status Scale, HC = healthy control, HSD = honest significant difference, MAP = 

mosaic approach, MUSIC = MS Inventory of Cognition, MS = multiple sclerosis, PMS = 

progressive MS, RRMS = relapsing-remitting MS, ” * “ = significant at an alpha-level of p <= 

0.05, “ ** ” at an alpha-level of p <= .001 

 

 One-way ANOVA (omnibus test, main effect: “clinical variable”) 
Clinical associations 

 Standard approach: CTh Mosaic approach: Thin-patch-fraction 

Estimate t-value Estimate t-value Estimate t-value 

EDSS  -1.166 -1.510    0.132 2.10e-3 2.439 0.0151* 

Cognition (MuSIC“) 5.102 2.247 0.025* -5.36e-3 -2.114 0.0350* 

Fatigue (MuSIC“) -5.804 -2.067 0.039* 7.53e-3 2.399 0.0168* 

Lesion volume -40.45 -8.953 <.001** 0.0514 10.86 <.001** 

Differentiation between MS patients and controls 

 Standard approach Mosaic approach: Thin patches Mosaic approach: Thick patches 
Estimate t-value p-value Estimate t-value p-value Estimate t-value p-value 

0.042 4.812 <.001** -21.92  -2.659 0.008* 6.496 3.174 0.002* 

Differentiation between MS clinical phenotypes 

 Standard approach Mosaic approach: Thin patches Mosaic approach: Thick patches 
F-value 

(DOF),  

p-value 

Significant pairwise contrasts 

(post-hoc)  

[p-value] 

F-value 

(DOF),  

p-value 

Significant pairwise 

contrasts (post-hoc)  

[p-value] 

F-value 

(DOF),  

p-value 

Significant pairwise contrasts 

(post-hoc)  

[p-value] 

F(4,564)  

= 35.24, 

p<.001* 

- RRMS – HC [padj < .001] 

- PMS – HC [padj < .001] 

- PMS – CIS [padj < .001] 

- PMS – RRMS [padj < .001] 

- RRMS – CIS [padj = .002] 

F(4,558)

= 13.84,  

p<.001* 

- RRMS – HC [padj < .001] 

- PMS – HC [padj < .001] 

- PMS – CIS [padj < .001] 

- PMS – RRMS [padj < .001] 

F(4,558)

= 7.663, 

p<.001* 

- RRMS – HC [padj < .001] 

- PMS – HC [padj = .009] 
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