
ON-LINE APPENDIX
A) Murray’s Optimality Principle
According to an elegant argument put forward by Murray in

1926,1 the pumping power required to overcome frictional resis-

tance of blood flowing through a vessel must be balanced by the

metabolic power required to maintain the blood volume. Under

the assumption of Poiseuille flow (fully developed, steady flow of

a constant-viscosity fluid in a long, straight tube of circular cross-

section), the pumping power is given by

A.1) Ppump �
128�LQ2

�D4 ,

where D is the vessel diameter, L is the vessel length, Q is the

blood flow rate, and � is the blood viscosity. The metabolic

power required to maintain the (cylindric) volume of blood is

given by

A.2) Pmetab � kL
�D2

4
,

where k is an unknown-but-constant property of the blood.

Mathematically, optimality is found when the derivative of the

total power with respect to diameter is zero:

A.3)
d�Ppump � Pmetab�

dD
� �

512�LQ2

�D5 � kL
�D

2
� 0.

Noting that Q and D are properties of the vessel (L cancels out),

whereas k and � are (nominally constant) properties of the blood,

Equation A.3 simplifies to

A.4) Q�D3.

This is the basis for the so-called “cube law” or Murray’s law,

which has since been generalized to a power law:

A.5) Q�Dn,

where the value of n may be closer to 2 in large conduit arteries,

where the Poiseuille flow assumption no longer holds.2

B) Murray’s Law for a Simple Bifurcation
Considering now the case of a single vascular bifurcation having

parent artery diameter D0 and daughter branch diameters D1 and

D2, it follows from Equation A.5 that the division of flow to the

daughter branches should be

B.1)
Q2

Q1
� �D2

D1
�n

.

Following Chnafa et al,3 we refer to this as the “flow ratio” power

law relation because it makes no assumption about the parent

artery diameter. If one invoked conservation of flow

B.2) Q0 � Q1 � Q2,

it follows that

B.3) D0
n � D1

n � D2
n,

which, again following Chnafa et al,3 we refer to as the “geomet-

ric” power law relation because it relates parent and daughter

branch

diameters. Equations B.1 and B.3 reduce to the standard Murray’s

law for a bifurcation when n � 3.

C) Zero-Pressure Outflow for a Simple Bifurcation
Consider the simple bifurcation described above. If we prescribe

the same pressure at both outlets, it follows that the pressure drop

across both daughter branches must be the same because they

originate at the same point, ie,

C.1a) pb � pout � Q1R1

C.1b) pb � pout � Q2R2,

where pb is the (unknown) pressure at the bifurcation point, pout

is the (prescribed) pressure at the outlets, and Ri is the viscous flow

resistance of branch i. It follows, simply, that

C.2)
Q2

Q1
�

R1

R2
.

Note that the flow division does not depend on the value of pout,

only that it is the same at both outlets. If, for the sake of argument,

we assume Poiseuille flow in the branch—the same assumption

underpinning Murray’s Law—the branch flow resistance is given

by

C.3) R i �
128�L i

�D i
4 .

Substituting this into Equation C.2, we get

C.4)
Q2

Q1
�

L1D2
4

L2D1
4.

In other words, for the zero-pressure method, the flow division

will depend on both the relative diameters and the lengths of

the outflow branches (as well as on the true nature of flow

inside the branch, which, of course, is only known after the

CFD simulation). In cerebrovascular CFD models, outlet

lengths are usually ad hoc, driven by image quality, the pres-

ence of downstream branches, or operator preference. On the

other hand, to facilitate the imposition of outflow conditions,

cylindrical outflow extensions are often added to the CFD

models. If these are sufficiently long and made proportional to

the outlet diameter, ie,

C.5) L i � kD i,

the outflow division reduces to

C.6)
Q2

Q1
�

D2
3

D1
3.

In other words, the zero-pressure and Murray-law methods are

roughly equivalent if long flow extensions, with lengths propor-

tional to the respective outlet diameters, are systematically added

to the CFD model.

Notwithstanding the above, the assumption that both outlets

have the same pressure is only valid if both daughter branches (or,

in the general case, all outflow branches) somehow merge down-

stream, which is rarely the case. Instead, all arterial branches even-

tually terminate at some distal vascular bed. If we assume that the
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2 daughter branches feed vascular beds of equal resistance, Equa-

tion C.1 becomes

C.7a) pb � pv � Q1�R1 � Rbed�

C.7b) pb � pv � Q2�R2 � Rbed�,

where pv is the pressure distal to the vascular bed (ie, the venous-

side pressure) and Rbed is the (downstream) vascular bed resis-

tance, which is in series with the (upstream) daughter branch

resistances. Equation C.7 obviously reduce to

C.8)
Q2

Q1
�

R1 � Rbed

R2 � Rbed
,

and since vascular bed (ie, arteriolar and capillary) resistances are

typically much greater than individual artery resistances, (ie, Rbed

�� Ri), Equation C.8 simplifies to

C.9) Q1 � Q2.

If one compares Equations C.4 and C.9, it should be clear that the

equal (or zero) pressure outflow condition is different from the

more physiological assumption of equal outflow resistances. With

the addition of carefully tuned long outflow branches, however,

the zero-pressure method might yield outflows comparable with

those of the Murray-law method.

D) Splitting versus Murray’s Law for a Multibranch Case
Consider now the schematic diagram shown in On-line Fig 4,

which represents the most common configuration of the 3D

models in our cohort. The conventional Murray-law approach to

estimating outflows is to apportion them on the basis of their

relative diameters cubed. In this case, for example, the proportion

of flow to, say, the M2b outlet would be

D.1)
QM2b

QICA
�

DM2b
3

�Doutlet
3 �

DM2b
3

DA1
3 � DOA

3 � DM2a
3 � DM2b

3 ,

and similarly for the other outlets. This requires no accounting for

how the vessels branch within the model (ie, it depends only on

the outlet diameters).

For our splitting method, on the other hand, we consider

separately the power law outflow division (Equation B.1) at

each bifurcation. For example, at the ICA/C7/OA branching,

we have

D.2)
QC7

QOA
�

DC7
n

DOA
n ,

where for now, we make no assumption about the value of the

exponent, n. Owing to flow rate conservation (Equation B.2),

Equation D.2 can be expressed equivalently as

D.3)
QC7

QICA � QC7
�

DC7
n

DOA
n ,

which, with re-arrangement of terms, becomes

D.4)
QC7

QICA
�

DC7
n

DOA
n � DC7

n .

Similarly, for the C7/A1/M1 and M1/M2a/M2b branching, we

obtain, respectively

D.5)
QM1

QC7
�

DM1
n

DM1
n � DA1

n

and

D.6)
QM2b

QM1
�

DM2b
n

DM2a
n � DM2b

n .

Multiplying Equations D.4, D.5, and D.6 together we obtain

D.7)

QM2b

QICA
� � DC7

n

DC7
n � DOA

n �� DM1
n

DM1
n � DA1

n �� DM2b
n

DM2a
n � DM2b

n � .

It is therefore easy to see how, for the splitting method, the pro-

portion of inflow to any outlet is simply the accumulated product

of the respective upstream flow divisions.

So far, for the splitting method, for a given branching, we have

assumed a power law relationship only for the daughter branches.

If we were also to invoke the geometric power law relationship

Equation B.3, Equation D.7 reduces to

D.8)
QM2b

QICA
� � DC7

n

DICA
n ��DM1

n

DC7
n ��DM2b

n

DM1
n � .

If we now assume n � 3 for all bifurcations, this simplifies to

D.9)
QM2b

QICA
�

DM2b
3

DICA
3 .

Similarly, if we invoke Equation B.3 for the Murray-law method,

Equation D.1 simplifies to

D.10)

QM2b

QICA
�

DM2b
3

DA1
3 � DOA

3 � DM1
3 �

DM2b
3

DC7
3 � DOA

3 �
DM2b

3

DICA
3 .

Thus, the Murray-law and splitting methods will give identical

results if and only if the following: 1) Every branch internal to the

model has the same power law exponent; and 2) the parent and

daughter branches of each bifurcation follow a geometric power

law (ie, Equation B.3). However, condition 1 likely does not hold

for cerebrovascular models that include the ICA4; and condition 2

shows more interindividual scatter for the geometric power law

than for the less restrictive flow ratio power law3 (ie, Equation

B.1).
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ON-LINE FIG 1. Flow rates imposed at the ICA inlet for the 70 cases of the study, ordered from lowest to highest. The flow rates are 257 � 67
mL/min. Note the letters identifying the 10 3D CFD cases and their 3 variants, as shown in Fig 1.

On-line Table 1: Enriched version of Table 1, showing predicted flow rates (mL/min) for various permutations of the outflow method
and power law exponent

Outflow Method ACA MCA OA PcomA ACA/MCA
No. of cases having artery 67 70 52 12 67
Zero-pressure 103 � 50 137 � 53 15 � 10 71 � 42 43:57
Murray-law (n � 3) 89 � 47 152 � 57 14 � 11 65 � 46 37:63
Murray-law (n � 2) 81 � 37 153 � 51 22 � 10 65 � 35 34:66
Splitting (n � 3) 77 � 42 174 � 54 5 � 4 45 � 38 30:70
Splitting (n � 2) 86 � 38 154 � 46 16 � 8 60 � 30 36:64

Note:—n � power law exponent.

On-line Table 2: Literature values used to compute the weighted in vivo average shown in Table 1a

Literature Values ACA MCA OA PCA ACA/MCA
Zarrinkoob et al5 (N � 94) 82 � 18 146 � 31 11 � 5 54 � 12 36:64
MacDonald and Frayne6 (N � 30) 103 � 41 142 � 44 – 63 � 24 42:58
Wåhlin et al7 (N � 20) 87 � 21 144 � 32 – – 38:62
Bammer et al8 (N � 14) 59 � 21 98 � 32 – 49 � 16 38:62
Enzmann et al9 (N � 10) 82 � 11 116 � 8 – 52 � 5 41:59
Zhao et al10 (N � 83) 83 � 27 148 � 29 – 65 � 14 36:64
Weighted average 84 � 24 142 � 31 11 � 5 59 � 14 37:63

Note:—N indicates the number of cases in referenced article.
a References are from the On-line Appendix.
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ON-LINE FIG 2. Surface distributions of TAWSS, normalized to the respective parent artery TAWSS, for the 10 3D CFD cases and their 3 variants.
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ON-LINE FIG 3. Surface distributions of OSI for the 10 3D CFD cases and their 3 variants.
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ON-LINE FIG 4. Schematic diagram of a typical branching in our
cohort.
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