
ON-LINE APPENDIX: METHODS
MR Imaging
All diffusion MR imaging data were obtained on 1.5T systems (GE

Healthcare) using an axial acquisition. The FOV ranged from 200

to 300 mm, with the majority and median being 220 mm, with an

acquisition matrix of 128 � 128, and most cases (n � 233) up-

sampled to a 256 � 256 reconstruction matrix, resulting in a

median in-plane resolution of 0.86 � 0.86 mm2 (0.86 � 0.86 to

0.94 � 0.94 mm2). Slice thickness ranged from 5 to 7 mm with gap

of 0 –1 mm; median, 5 mm (5–5 mm) thickness; and 1 mm (1–1

mm) gap. Slice coverage ranged from 18 to 30 slices, with a me-

dian of 24 slices (23–26 slices). The median TR was 5000 ms

(5000 –5000 ms), and the median TE was 89 ms (85–96 ms). The

number of diffusion gradient directions was 3 (n � 13), 6 (n �

156), 15 (n � 2), 21 (n � 9), and 25 (n � 87), with 1 average (for

21 and 25 direction acquisitions) to 5 averages (6 directions).

Diffusion-weighting (b-value) of the high-b-value volume ranged

from 1000 to 1221 s/mm2, but most cases had b-values of 1000

s/mm2 (n � 259). For the 8 cases with b-value � 1221 s/mm2, the

low b-value was 3.1 s/mm2. All other data had a low b-value of

0 s/mm2.

Convolutional Neural Network Training
DeepMedic is a 3D convolutional neural network that operates on

2 multiresolution pathways to allow efficient and accurate super-

vised segmentation.1 This framework was chosen over other ap-

proaches such as multispectral support vector machines2 and ran-

dom forests because it was shown to perform best in the ISLES

2015 trial.3 Other studies have also shown better or comparable

performance of DeepMedic compared with other neural network

architectures.4-9 In brief, the DeepMedic framework includes a

high- and low-resolution pathway (isotropic subsampling by fac-

tor 3) with an equal number of 8 convolutional layers consisting

of 30, 30, 40, 40, 40, 40, 50, and 50 feature maps. The convolu-

tional kernels were the same size (3, 3, 3) for all layers. The outputs

of layers 2, 4, and 6 were connected to the outputs of layers 4, 6,

and 8, respectively.10 The outputs of the high- and low-resolution

paths were concatenated and linked to 2 convolutional layers with

isotropic kernels of 1 � 1 � 1 (each with 150 neurons). On-line

Fig 1 shows the architecture. To avoid overfitting,11 we applied a

drop-out rate of 50% to the final convolutional and the classifi-

cation layers.

RESULTS
Differences in MR imaging acquisition parameters between

the Training Cohort and Evaluation Cohort are shown in On-line

Table 1.

Five different CNNs were trained on 2 (DWI�ADC) or all 3

(DWI�ADC�LOWB) diffusion maps (On-line Tables 2 and 3,

respectively). The performances were consistent across the CNNs,

with marginal fluctuations and no measurable differences. Creat-

ing ensembles of each of the 5 CNNs improved the Dice scores

and precision significantly compared with each individual CNN

(P � .001). The sensitivity of E2 followed this trend; however, it

was only significantly higher than 2 of the individual CNNs (On-

line Table 2, CNN 2 and CNN 5, P � .05). E3 was significantly

more sensitive than 2 CNNs also trained on 3 diffusion maps

(On-line Table 3, CNN 2 and CNN 3, P � .01).
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ON-LINE FIG 1. The DeepMedic architecture used operates on 2 different receptive fields, one with original resolution and one isotropically
downsampled by a factor of 3. Each receptive field was processed by individual but equally constructed pathways. Each included 8 convolu-
tional layers (L1–L8) with 3 � 3 � 3 kernel size and 3 residual connections between outputs of layers 2 and 4, 4 and 6, as well as 6 and 8 (� signs).
The final output of the low-resolution pathway was upsampled (UP) to match the output of the normal resolution pathway (ie, 9 � 9 � 9). Both
outputs were then concatenated (CONCAT) and processed by 2 further convolutional (L9 and L10) layers with 3 � 3 � 3 and 1 � 1 � 1 kernel sizes,
respectively, and 1 residual connection. The final classification layer (CLASS) provided the lesion prediction. Although the figure shows only the
DWI channel, multiple channels can be easily used.
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ON-LINE FIG 2. Distribution of Dice scores of all models. The models trained on single diffusion parametric maps are shown in the first row (A);
2 parametric maps, in the second row (B); and all 3 parametric maps along with ensemble results from 5 separate convolutional neural networks
in the third row (C). Of the individual models, the one based on DWI did best, while the individual ADC model performed moderately well and
the LOWB model performed worst. Dice scores using 2 parametric maps did better, with DWI�ADC yielding the best performance (P � .05).
Adding LOWB maps to the CNN (DWI�ADC�LOWB) did not improve the Dice scores over the DWI�ADC model (P � .49). Both ensembles
(lowest row), each consisting of 5 CNNs trained either on DWI�ADC (E2) or DWI�ADC�LOWB (E3), outperformed all other models (P � .001)
but offered a similar performance compared with each other (P � .66). The white bar in the violin plot shows the IQR, mean is a diamond, and
median is an X for all plots (A, B, C).
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ON-LINE FIG 3. Distribution of Dice scores for all 5 CNNs trained on DWI�ADC maps and their ensemble (E2). The white bar within the violin
plot shows the IQR, mean is a diamond, and median is an X.

ON-LINE FIG 4. Distribution of Dice scores for all 5 CNNs trained on DWI�ADC�LOWB maps and their ensemble (E3). The white bar within
the violin plot shows the IQR, mean is a diamond, and median is an X.
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ON-LINE FIG 5. Sample segmentation results of the ensemble of DWI�ADC�LOWB (blue regions) on sample subjects along with manual
outlines (red outlines) and probability-of-infarction maps for the same patients shown in Fig 2.

ON-LINE FIG 6. Example of poor segmentation results. LOWB, ADC, and DWI maps are shown along with an automatically extracted brain mask
(yellow) overlaid on the LOWB image from an 86-year-old woman presenting with an admission NIHSS score of 12 and scanned approximately
6 hours from when she was last known to be well. For this slice, there is no evident lesion on the DWI; however, the segmented lesion (pink
overlay in “Brain Mask & Segmentation” panel) grossly encompasses normal tissue and background. This artifact is due to the poor automated
brain extraction as a result of scanner inhomogeneity artifacts. The measured lesion volume is 14.1 cm3, while the automated lesion volume is
133.7 cm3.
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On-line Table 1: Diffusion-weighted MRI acquisition parametersa

Characteristic Training (n = 116) Evaluation (n = 151) P Value
TR (ms) 5000 (5000–5000) 5000 (5000–6000) �.001
TE (ms) 88.9 (85.9–94.5) 89.7 (85.3–99.2) .35
FOV (mm) 220 (220–220) 220 (220–220) .28
Reconstructed matrix 256 � 256 128 � 128 (n � 34), 256 � 256 (n � 117) �.001
Slices 24 (23–26) 24 (23–26) .70
Slice spacing (mm) 6 (6–6) 6 (6–6) .60
Directions 3 (n � 11), 6 (n � 84),

25 (n � 21)
3 (n � 2), 6 (n � 72), 15 (n � 2),

21 (n � 9), 25 (n � 66)
�.001

a Shown are median (IQR) values and statistical significance of differences between the training and Evaluation Cohort.

On-line Table 2: Five different CNNs trained on 2 diffusion maps (DWI�ADC) and their ensemble (E2)a

CNN 1 CNN 2 CNN 3 CNN 4 CNN 5 E2
Dice 79.0 (57.1–86.4) 79.0 (55.6–86.9) 79.2 (57.6–86.7) 79.7 (57.8–86.8) 79.6 (51.7–86.5) 82.0 (62.9–88.1)
Precision 79.0 (62.1–90.5) 75.4 (54.5–89.6) 78.3 (55.4–90.2) 79.0 (60.3–88.3) 77.9 (47.2–90.3) 82.0b (65.1–92.6)
Sensitivity 82.6 (68.4–91.4) 83.9 (73.1–92.0) 85.4 (70.4–92.8) 83.6 (68.4–91.2) 83.1 (72.5–91.4) 84.1 (71.0–92.6)

a All performance metrics in median (IQR). Performance was robust across all single CNNs (CNNs 1–5). The ensemble had significantly better Dice performance than all single
models (P � .001).
b Excludes 1 subject with automatically segmented lesion volume of zero because precision is undefined in this circumstance.

On-line Table 3: Five different CNNs trained on 3 diffusion maps (DWI�ADC�LOWB) and their ensemble (E3)a

CNN 1 CNN 2 CNN 3 CNN 4 CNN 5 E3
Dice 78.9 (56.2–86.2) 79.3 (53.7–86.6) 80.2 (59.1–86.9) 80.1 (58.6–86.9) 79.4 (55.8–86.7) 82.2 (64.9–88.9)
Precision 77.4 (55.0–89.8) 77.2 (52.7–88.6) 78.2 (57.8–91.4) 76.9 (58.2–89.8) 77.7 (55.7–90.4) 83.2 (67.7–93.3)
Sensitivity 83.4 (71.3–91.8) 84.1 (72.1–93.4) 81.8 (69.1–90.9) 84.2 (70.3–92.2) 84.6 (71.6–91.4) 83.9 (71.9–92.4)

a All metrics are denoted in percentages as median (IQR). Performance was robust across all single CNNs (CNNs 1–5). The ensemble (E3) outperformed all single models (P � .001)
in terms of Dice.

On-line Table 4: Ensemble results as a function of lesion location for the Evaluation Cohorta

Cortical (n= 104) Subcortical (n = 30) Multiple (n = 4) Cerebellum (n = 8) Brain Stem (n = 5) P Value
MLV (cm3) 20.5 (5.7–57.2) 1.8 (0.6–4.9) 11.5 (9.6–13.5) 5.5 (1.3–11.3) 0.6 (0.3–0.9) �.001
ALV (cm3) 25.1 (7.0–55.9) 2.8 (1.0–9.3) 9.9 (5.8–10.9) 4.9 (0.2–9.7) 0.3 (0.1–0.6) �.001
Dice 84.9 (71.1–90.5) 73.3 (48.5–84.6) 79.3 (54.4–92.3) 64.5 (14.1–83.7) 42.8 (0–71.6) .002
Precision 85.6 (68.1–93.9) 66.3b (38.6–82.3) 93.3 (76.1–96.9) 67.9 (12.2–86.0) 75.9b (18.5–94.5) .01
Sensitivity 86.9 (75.7–93.2) 90.2 (68.6–94.6) 76.3 (42.3–92.5) 71.9 (10.9–89.5) 30.1 (0–60.0) �.001

Note:—ALV indicates automatically segmented lesion volume.
a All metrics are denoted in percentages as median (IQR).
b Excludes 1 subject with automatically segmented lesion volume of zero because precision is undefined in this circumstance.
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