
ONLINE-SECTION: DATA 

     Prospective 3D-FLAIR MRI acquisition was performed on a cohort 

of 35 subjects to study extracranial carotid artery disease and its 

impact on white matter hyperintensities (WMH) in the brain. The 

imaging parameters for the sequence are as follows: in-plane 

resolution=0.96mm, slice-thickness=0.99mm, TR=7000ms, 

TE=430ms, TI=2100ms, ETL=256, acquisition-matrix=270x240, 

refocusing flip angle=120°, FOV=258x230mm2, average-slices=176.  

Additionally, 3D-FLAIR volumes from 20 subjects were randomly 

selected from the third phase of publicly available Alzheimer’s 

Disease Neuroimaging Initiative (ADNI) (http://adni.loni.usc.edu) 

repository to test the generalizability of WMH detection framework. 

ADNI is a longitudinal natural history study launched in 2003 as a 

public-private partnership, led by Principal Investigator Michael W. 

Weiner, MD. The primary goal of ADNI has been to test whether 

serial magnetic resonance imaging (MRI), positron emission 

tomography (PET), other biological markers, and clinical and 

neuropsychological assessment can be combined to measure the 

progression of mild cognitive impairment (MCI) and early 

Alzheimer’s disease (AD). For up-to-date information, see 

www.adni-info.org. The sequence parameters for Sagittal 3D-FLAIR 

acquisition for ADNI3 are as follows: Effective TE=119ms, 

TR=4800ms, TI=1650ms, acquisition-matrix=256x256, average-

slices=160. Additional details about ADNI3 MR protocols is available 

at http://adni.loni.usc.edu/wp-content/themes/freshnews-dev-

v2/documents/mri/ADNI3-MRI-protocols.pdf.  

     These subjects were selected randomly from the cognitively 

normal (10 subjects) and mild cognitive impairment (10 subjects) 

using the following selection criteria: 1) Only FLAIR volumes from 

the initial (baseline) visit were considered. 2) Subjects with dementia 

diagnosis were excluded. 3) Subjects were amyloid beta negative as 

determined by standardized uptake value ratio threshold of 1.1 (18F-

florbetapir PET scans) This resulted in 20 3D-FLAIR volumes from 16 

unique imaging sites and multiple scanner manufacturers and 

systems. The scanner-wise subject breakdown are as follows: 

Siemens Prisma/Prisma Fit (11), Siemens Skyra (3), Siemens Verio (2), 

Siemens Trio/Tim (1), Philips Achieva (1), Philips Ingenia (1), and GE 

MR750: 1. 

ONLINE-SECTION: METHODS 

Loss Functions 

     The categorical cross entropy and weighted binary cross entropy 

loss functions used in this work is defined are defined as follows:   
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Here, 𝑟+ and 𝑝+ are the nth voxel in the ground truth annotations 

and the predicted white matter hyperintensities (WMH) mask, 

respectively. The weights 𝑤* and 𝑤2 are the weights for the 

foreground and the background regions in the masks. This 

formulation assigns larger weights to the minority foreground class 

associated with WMH voxels and smaller weights to the majority 

foreground class, handling class-imbalance. The weights for a 

particular class are calculated from the ratio of total number of 

training samples to the number of samples belonging to that class 

i.e.	𝑤7 =
89
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. Here, C refers to the number of classes.  

 

CNN Implementation 

     The DeepUNET3D CNNs in StackGen-Net were trained with the 

following parameters: loss=weighted binary cross-entropy, 

epochs=120, batch size=10, optimizer=ADAM21, learning rate=0.001, 

decay factor=0.1, and dropout probability=0.4. The learning rate was 

identified by a coarse grid search to ensure convergence of the 

training and validation loss curves. The same parameters were 

retained for training individual CNNs for the ablation studies. The 

training parameters for Meta-CNN were: loss=categorical cross 

entropy, epochs=400, batch size=64, optimizer=Stochastic Gradient 

Descent, learning rate=0.001, and decay factor=0.1.  

 

Statistical Analysis 

     A Kolmogorov-Smirnov test was performed to determine if the 

sample distribution matched the characteristics of a normal 

distribution before performing parametric t-tests. For all the 

comparisons performed in the manuscript, the data did not 

significantly deviate from a normal distribution (P>0.10, α=0.05).

 



 

Online-Table 1: Convolutional Neural Network training parameters 

WBCE = weighted binary cross entropy; CCE = categorical cross entropy; SGD = stochastic gradient descent;  
 
 

 

Online-Table 2: Definitions for segmentation evaluation metrics 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
GT = set of points constituting ground truth; P = set of points constituting predicted lesion mask;  
Np = number of lesions in predicted lesion mask; PL = precision-lesion; RL= recall-lesion;  
VGT = volume of ground truth mask; VP = volume of predicted lesion mask; |A| = cardinality of set A;   
𝛿>  = one-sided Hausdorff distance between two sets of points; P@A = 95th percentile 
 
 
 
 
 
 
 

 

 
UNET2D UNET2D-WS DeepMedic DeepUNET2D DeepUNET3D Meta-CNN 

Loss Function WBCE Dice CCE WBCE WBCE CCE 
Training data 64x64 200x200 25x25x25 64x64 64x64x7 16x16x16 
Optimizer ADAM ADAM RMSProp ADAM ADAM SGD 
Learning Rate 1e-6 2e-4 1e-3 1e-5 1e-3 1e-3 
Epochs 200 120 35 120 120 400 
Trainable 
parameters (M) 

~31.03 ~8.74 ~2.08 ~0.562 ~1.68 8 

Metric Definition 

Dice (F1-P) 2	|𝑃	 ∩ 	𝐺𝑇|
|𝑃| + |𝐺𝑇|  

Precision-P |𝑃	 ∩ 	𝐺𝑇|
|𝑃|  

Recall-P |𝑃	 ∩ 	𝐺𝑇|
|𝐺𝑇|  

Precision-L 𝑁(I	∩	JK)
𝑁I

 

Recall-L 𝑁(I	∩	JK)	
𝑁LM

 

F1-L 2 ∗
	(𝑃L ∗ RL)
PL + 𝑅𝐿  

Volume Difference 𝑎𝑏𝑠(	𝑉I − 𝑉LM)	
𝑉LM

 

HD95 P@A{𝛿>(𝐺, 𝑃), 𝛿>(𝑃, 𝐺)} 



Online-Table 3: Comparison of architecture (Mean ± SD) choice  
on test cohort 1 

 
 
 
 
 
 
 
 
 
 
 
 

*P < .01 (two-sided paired t-test, UNET2D and DeepUNET2D) 
 **P < .001 (two-sided paired t-test, UNET2D and DeepUNET2D) 
†P < .01 (two-sided paired t-test, DeepUNET2D and DeepUNET3D) 
††P < .001 (two-sided paired t-test, DeepUNET2D and DeepUNET3D) 
 

 

Online-Table 4: Comparison of StackGen-Net with state-of-the-art  
(Mean ± SD) on test cohort 1  

 
 
 
 
 
 
 
 
 
 
 
 
 

*Best CNN model in UNET2D-WS-E (Ensemble)  
 

Online-Table 5: Comparison* of StackGen-Net (Mean ± SD) 
with DeepUNET3D trained with 3D cubes (64x64x64) 

 
 
 
 
 
 
 
 
 
 
 
 

*Evaluated on test cohort 1  

 
UNET2D DeepUNET2D DeepUNET3D 

Dice (F1-P) 0.43 ± 0.17 0.54 ± 0.15* 0.74 ± 0.06†† 

Precision-P 0.72 ± 0.19 0.75 ± 0.15 0.84 ± 0.08 
Recall-P 0.32 ± 0.19 0.45 ± 0.16* 0.66 ± 0.08† 

Precision-L 0.60 ± 0.20 0.70 ± 0.16 0.81 ± 0.10 

Recall-L 0.37 ± 0.09 0.64 ± 0.11** 0.80 ± 0.15† 
F1-L  0.44 ± 0.10 0.65 ± 0.08** 0.80 ± 0.11† 

|VD|(%) 54.4 ± 22.1 38.6 ± 25.1 21.2 ± 10.5 

 
LST-LPA UNET2D-WS* StackGen-Net 

Dice (F1-P) 0.23 ± 0.15 0.62 ± 0.10 0.76±0.07 
Precision-P 0.49 ± 0.28 0.69 ± 0.16 0.73±0.11 
Recall-P 0.21 ± 0.15 0.58 ± 0.08 0.79+0.1 
Precision-L 0.28 ± 0.16 0.66 ± 0.17 0.75±0.11 
Recall-L 0.25 ± 0.15 0.75 ± 0.14 0.87±0.08 
F1-L 0.20 ± 0.07 0.68 ± 0.10 0.80±0.09 
|VD|(%) 72.6 ± 47.1 19.1 ± 14.1 12.3±12.7 
HD95 28.1 ± 12.8 12.4 ± 6.6 5.27±3.15 
AUC 0.25 ± 0.18 0.44 ± 0.12 0.84±0.07 

 
DeepUNET3D-Cube StackGen-Net 

Dice (F1-P) 0.725 ± 0.041 0.76 ± 0.073 
Precision-P 0.838 ± 0.067 0.729 ± 0.116 

Recall-P 0.642 ± 0.053 0.797 + 0.1 

Precision-L 0.848 ± 0.145 0.753 ± 0.115 

Recall-L 0.703 ± 0.216 0.87 ± 0.08 
F1-L 0.76 ± 0.187 0.798 ± 0.091 

|VD|(%) 22.8 ± 9.2 12.3 ± 12.7 



Online-Table 6: Pairwise F1-L (Mean, Median) on Test Cohort 2 
 

 

 

 

 

 

 

 

 

 
 

 
 

 

 

 
Observer1 Observer2 StackGen-Net 

Observer1 - 0.69, 0.65 0.70, 0.73 

Observer2 
 

- 0.62, 0.67 

StackGen-Net 
  

- 

Online-Figure 1: Training (blue) and validation (orange) loss evolution curves for different convolutional neural 
networks (CNNs). The categorical cross entropy loss evolution curves for the Meta CNN over 400 epochs are 
shown in (A). A comparison of weighted binary cross entropy (WBCE) loss curves for DeepUNET3D, 
DeepUNET2D, and UNET2D is shown in (B). The three CNNs were trained on axially oriented training patches. 
The WBCE loss evolution curves for the orthogonal CNNs over the first 30 epochs (highlighted in gray) are 
shown in (C). 
 



 

 
 
 
 
 

 

Online-Figure 2: WMH predictions from DeepUNET3D-Axial, DeepUNET3D-Sagittal, DeepUNET3D-Coronal, and StackGen-Net 
overlaid on a representative axial slice from a test subject. Manual annotations are shown for comparison. The arrows show 
WMH that were missed (yellow) or whose contours were mis-identified (blue) by a majority of the CNNs in the stacked-
generalization ensemble. These WMH would have been missed by a simple averaging or majority voting of the orthogonal CNN 
predictions but are identified correctly by StackGen-Net. 
 



 Online-Figure 3: Comparison of WMH predictions from StackGen-Net, DeepMedic, and UNET2D-WS-E. The manual annotations and 
predictions are overlaid in red on representative axial FLAIR images from two subjects. For each subject, the bottom row shows the 
inset zoomed. The yellow arrows in Subject 1 point to false positives predicted by DeepMedic at the juxtacortical margin. The blue 
arrow in Subject 2 shows WMH at left anterior centrum semiovale. StackGen-Net correctly identifies that the central area of 
encephalomalacia is not a white matter lesion. The yellow arrow points to a false negative region (diffuse WMH). 
 



 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Online-Figure 4: Correlation plot and Bland-Altman analysis for agreement in the number of WMH 
lesion between the ground truth annotations and StackGen-Net predictions. The coefficient of 
variation (CV) and the repeatability coefficient (RPC) also shown. A connected component analysis 
was used to identify individual lesions in the WMH masks. 
 

Online-Figure 5: WMH Lesion volumes (mL) in study cohort. (A) A histogram of white matter hyperintensities 
volume (mL) per subject in the study cohort (n=50, mean ± standard deviation=8.1±11.3 mL, median=2.9 mL) is 
shown. A majority of the cases in the study cohort have a lesion burden less than 15mL. (B and C) Scatter plot of 
white matter hyperintensities volume vs StackGen-Net performance measured in Dice metric on the test cohorts 
(n=29). The volumes are in logarithmic scale for display. As expected, lower lesion burden affects dice scores. 

 



 
 
 
 
 
 
 
 
 
 
 
 

Online-Figure 6: Effect of varying through-plane and in-plane spatial extent on WMH segmentation performance of 
DeepUNET3D CNN on test cohort 1. (A-C) The number of slices in training patches of size 64x64xN were increased as indicated 
by the legend. With increasing spatial extent along the slice direction, there is an increase in Dice scores and F1-L values and 
a decrease in volume difference. However, after a certain through-plane patch size, there are no considerable changes. (D-F) 
The in-plane spatial extent of the training patch of size NxNx7 were varied as indicated by the legend. 

 



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Online-Figure 7: WMH predictions overlaid on multi-planar views from a subject in test cohort 2 (ADNI3). Manual 
annotations are presented for reference. StackGen-Net is able to accurately predict lesions on an independent test cohort 
with performance comparable to human observers. 

 



 
 

 
 

Online-Figure 8: Representative examples of false-negatives and false-positives (top-row) in WMH 
predictions by StackGen-Net. The blue and yellow arrows in top row show hyperintensities within 
the thalamus and in the extracapsular region. StackGen-Net accurately ignores the WMH within 
the thalamus (blue arrow) but has trouble accurately detecting the lesion at the extracapsular 
region (yellow arrow). The second row shows false negatives in the midbrain region where 
StackGen-Net misses the WMH due to microvascular ischemic changes. The last row shows a false 
positive WMH. These are likely due to the absence of adequate training examples for WMH in the 
midbrain region or lesions in the gray matter region. 

 


