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Supplemental Appendix 1. Introduction of the Hemodynamic Parameters by CFD. 

Eleven quantitative hemodynamic parameters were included in this study to describe and 

analyze the sophisticated blood flow conditions. The parameters were pressure, wall shear 

stress (WSS), averaged WSS-absolute (AWSS-ABS), averaged WSS-mean (AWSS-MEAN), 

WSS gradient (WSSG), averaged WSS gradient (AWSSG), oscillatory shear index (OSI), 

relative residence time (RRT), aneurysm formation index (AFI), gradient oscillatory number 

(GON) and spatial WSS gradient (G). All parameter values were acquired from cardiac 

systolic telophase.1,2 The amount of each quantitative hemodynamic factor depends on the 

amount of image-based aneurysm grid, therefore we used the coefficient of variation (CV) 

which could describe the dispersion degree of data to describe the hemodynamic parameters 

of intracranial aneurysms sac. In the following, the quantitative hemodynamic parameters 

were expressed as PressureCV, AWSSMEANCV, WSSCV, AWSSABSCV, OSICV, RRTCV, 

WSSGCV, AWSSGCV, AFICV, GCV, and GONCV. 
 

Quantitative hemodynamic parameters 

1. Pressure. 

2. Wall shear stress (WSS): WSS is the tangential force exerted by the viscosity of the 

movement of the blood wall. It is measured in N/m2, namely in Pa. 

3. Averaged WSS- absolute (AWSS-ABS): time-average of the absolute value of WSS 

during a cardiac cycle. 

4. Averaged WSS -mean (AWSS-MEAN): time-average of the mean WSS during a cardiac 

cycle. 

5. WSSgradient (WSSG): a spatial derivative measure along the direction of the flow. 

6. Averaged WSSgradient (AWSSG): the time-average spatial WSS gradient during a 

cardiac cycle. 

7. Oscillatory shear index (OSI): a non-dimensional parameter, means the directional 

change of WSS during the cardiac cycle. 

8. Relative residence time (RRT): a marker of disturbed flow, which marked by low 

magnitude and high oscillatory wall shear stress. 

9. Aneurysm formation index (AFI): quantifies the cosine of the angle between two vectors, 

which represent a certain instant during the flow cycle and the time-averaged WSS 

vector. 

10. Gradient oscillatory number (GON): quantifies the degree of oscillating 

tension/compression forces. 



11. G: spatial WSS gradient. 
 

Qualitative hemodynamic parameters 

Four qualitative hemodynamic parameters were included in this study. The parameters were 

consisted of flow complexity, flow stability, inflow concentration, flow impingement 

introduced by Cerebral et al.3 The computed blood flow fields were visualized by using 

streamlines in the sac.  

The hemodynamic visualizations were analyzed to classify blood flows according to the 

following characteristics:  

Flow complexity. “Simple” flow pattern indicates flow patterns consisting of a single 

recirculation zone or vortex structure within the aneurysm. “Complex” indicates flow patterns 

exhibiting flow divisions or separations within the aneurysm sac and containing more than 1 

recirculation zone or vortex structure. 

Flow stability. “Stable” indicates flows patterns that persist (do not move or change) during 

the cardiac cycle. “Unstable” indicates flow patterns in which the flow divisions and/or vortex 

structures move or are created or destroyed during the cardiac cycle. 

Inflow concentration. “Concentrated” inflow streams or jets penetrate relatively deep into 

the aneurysm sac and are thin or narrow in the main flow direction. “Diffuse” indicates inflow 

streams that are thick compared with the aneurysm neck and flow jets that disperse. 

Flow impingement. The “flow impingement zone” is the region of the aneurysm where the 

inflow stream is seen to impact the aneurysm wall and change its direction and/or disperse. 

Typically this region has an associated region of elevated WSS: a small impingement if the 

area of the impingement region is small compared with the area of the aneurysm (<50%); a 

large impingement, if the area of impingement is large compared with the area of the 

aneurysm (>50%). 

For the evaluation of qualitative hemodynamic parameters, an inter-reader agreement analysis 

was performed. 200 aneurysms in the training cohort were randomly selected and evaluated 

independently by two observers (G.Z.C. and Z.S., with 7 and 3 years experiences in 

neuroradiology, respectively), who were blinded to the clinical history of the patients. In cases 

of disagreement between the two observers, consensus was reached after a joint reading. After 

validating good inter-reader agreement, the qualitative hemodynamic assessment of all 

aneurysms was performed by an observer (G.Z.C. with 7 years experiences in 

neuroradiology). 

Supplementary Figure 2 shows some representative qualitative hemodynamic images for 



unruptured and ruptured intracranial aneurysms. 



Supplemental Appendix 2. Introduction of the Employed Machine Learning Algorithms. 

 

Four ML methods (LR, SVM, RF, and MLP) for developing a prediction model were 

implemented for predicting small intracranial aneurysms rupture status, and they represent 

different categories of ML algorithm. The details of the methods are as follows: 

Logistic Regression (LR): LR model is a regression model. For each data sample, the LR 

model will output the probability of being positive. In the training stage, the goal of the model 

is to estimate a weight for each data dimension to minimize the differences between 

prediction and label. This weight matrix can tell us how each data dimension will influence 

the final prediction and this is why LR model has good interpretability. 

Support Vector Machine (SVM): SVM is a binary classification model. For each data 

sample, the SVM model will output distance between current data sample, the sign symbol of 

this distance indicate prediction is positive or negative. The goal of this model in training 

stage is to find a linear hyperplane separating positive data samples from negative data 

samples in training set with maximum margin. Besides, we applied kernel function to SVM 

model to map data into higher dimension to make more accurate hyperplane. 

Random Forest (RF): The RF model is an ensemble algorithm. RF model consist of a 

collection of regression or classification decision trees. In training stage, this model is to fit 

these trees to data. And in prediction stage, the model will output the average prediction of 

trees in the forest. More details about random forest model can be found in original article.4 

Multi-layer perceptron (MLP): MLP model is a regression model. The implanted MLP is a 

three-layer network, consists of an input layer, a 64-unit hidden layer and an output layer. 

Activation function of this network is Rectified Linear Unit (RELU), and the optimizer is 

Adam. The introduction of this hidden layer will make the MLP model better use data and 

achieve better performance.



Supplemental Appendix 3. Introduction of the Employed Feature Selection Algorithms.  

 

There were 6 methods used for feature selection in our study, which can be divided into filter 

(F-test, Pearson correlation coefficient based, mutual information-based feature selection 

algorithms), wrapper (Recursive Feature Elimination (RFE) algorithm) and embedded 

categories (L1 based and tree-based feature selection algorithms). Each method was employed 

individually, and the method with the highest AUC in the validation set was selected. 

The filter feature selection methods apply a statistical measure to calculate scores of features, 

and rank scores to decide whether this feature should be removed or not. In this study, F-test, 

Pearson correlation coefficient and mutual information-based feature selection algorithms 

were conducted. Each of the three filter feature selection methods was set to preserve 1%, 5%, 

10%, 30% and 50% of the features, so a total of 15 filtering feature selection methods were 

tested. 

For wrapper methods, different feature combinations of features were prepared and selected 

by the final performance of a base model. RFE algorithm was employed and a 5-fold cross 

validated Logistic Regression (LR) model was used as base model. Considering matching the 

number of features, the step size of RFE was set to 10 and the half of the features were 

selected.  

Embedded method prefers to choose the features that best contribute to the accuracy of the 

base model. In our study, L1 based and tree-based feature selection algorithms were tried. The 

L1 based method used linear C-support vector classification model as base model, and 4 

penalization intensity was tested (C=0.01, 0.1, 1 and 10). The tree-based feature selection 

algorithm employed extra-trees classifier as base model (num of estimators = 100, criterion = 

gini, min samples for split = 2, min samples per leaf = 1, min impurity decrease = 0.0). Above 

all, 5 embedded methods were tested in our study.



Supplemental Appendix 4. The Feature Selection Results  

 

The features used for models fitting are described below: 

 

Logistic Regression (LR):  

Clinical: age; sex of male; with smoke; with diabetes mellitus; with ischemic stroke; with 

coronary artery disease; 

Morphological: size; with regular shape; with unregular shape; locate at PCoA; locate at 

ACoA; locate at ICA; locate at MCA; 

Hemodynamic: with stable inflow; with concentrated inflow concentration; with small 

impingement area; with hypertension; WSS; RRT; OSI; GON; AWSSG. 

 

Support Vector Machine (SVM)： 

Clinical: age; sex of male; with smoke; with alcohol intaking; with diabetes mellitus; with 

coronary artery disease; with ischemic stroke; 

Morphological: size; with unregular shape; locate at PCoA; locate at ACoA; locate at 

ICA; locate at MCA; without daughter sac; with single aneurysm; with simple flow pattern in 

the aneurysm sac; 

Hemodynamic: with stable inflow; with concentrated inflow concentration; with small 

impingement area; with hypertension; pressure; OSI; RRT; WSS; AWSSG; AWSSMEAN; 

GON; WSSG; AFI; AWSSABS; G. 

 

Random Forest (RF): 

Clinical: age; sex of male; with smoke; with diabetes mellitus; with coronary artery 

disease; with ischemic stroke; 

Morphological: Size; with unregular shape; locate at PCoA; locate at ACoA; locate at 

ICA; locate at MCA; 

Hemodynamic: with stable inflow; with concentrated inflow concentration; with small 

impingement area; WSS; GON; OSI; RRT; AWSSG; with hypertension. 

 

Multi-layer Perceptron (MLP):  

All collected features were involved for model fitting. 



 
Supplemental Figure 1. Computational Fluid Dynamics (CFDs) Simulation Procedure. The 

graph indicates the major procedures of CFD, including human annotation, model 

reconstruction, unstructured meshes, and transient CFD simulation. 

Note: The process of the CFD was conducted with commercial software in our study. 2D 

cross-sectional images of CTA images of the cerebral aneurysms and its parent arteries were 

first imported into MIMICS, Version 16.0 for image segmentation and reconstruction. The 

vascular models were converted to a stereolithography (STL) format and exported to 



Workbench, Version 15.0 (ANSYS Inc.). Unstructured meshes were created with ICEM CFD, 

Version 15.0 (ANSYS Inc.). The maximum element size was 0.5 mm with a minimum size of 

0.2 mm for the high curvature regions and the surface of the aneurysms. Unsteady CFD 

simulation was performed with Fluent, Version 15.0 (ANSYS Inc.), which uses a finite 

volume approach to solve the Navier-Stokes equations (Figure R2, and also seen in 

Supplemental Figure 1 in the Supplementary file).



 
Supplemental Figure 2. Representative Qualitative Hemodynamic Parameters for Unruptured and Ruptured sIAs.  

Visualizations of ruptured aneurysm of AcoA (A. top row) and unruptured aneurysm of PcoA (B. bottom row) at peak systole for the first 

three and at end diastole for the fourth one by using streamlines. From left to right, the visualizations show impingement zone concentration, 

complexity, and stability.



 
Supplemental Figure 3. Calibration Curves in the Internal Dataset. 

Panels A-D: Calibration curves in the internal validation dataset for LR, RF, SVM, and MLP, 

respectively. 

LR, logistic regression model; SVM, support vector machine model; RF, random forest 

model. 

*:The output of each data sample of SVM Model is distance between the hyperplane and data 

sample, so we first apply sigmoid function on it to transform this distance to a value in range 

from zero to one to represent the probability. 

Note: A (LR) and C (SVM) tend to underestimate the probability of rupture. B (RF), for the 

interval with low prediction probability, tends to overestimate the probability of rupture; for 

the interval with high prediction probability, the prediction probability is more accurate. For D 

(MLP), for the interval with low prediction probability, it tends to overestimate the probability 

of rupture; for intervals with high prediction probability, the probability of rupture tends to be 

underestimated. 

Several reasons contributed to the low predicted probability of being ruptured. Firstly, we only 

have 94 cases in the internal validation cohort, which is too small to construct the calibration 

curve. Secondly, the probability values generated by SVM or other machine learning models 



were not calibrated itself. For example, the SVM often shows a sigmoid curve, which is 

typical for maximum-margin methods.1 
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Supplemental Figure 4. Performance of LR algorithm, the derived top 10 variables and the 

performance of the features belonging to the three categories separately in the internal 

validation dataset. 



 

Supplemental Figure 5. Performance of RF algorithm, the derived top 10 variables and the 

performance of the features belonging to the three categories separately in the internal 

validation dataset.



 

Supplemental Figure 6. Performance of MLP algorithm and the performance of the features 

belonging to the three categories separately in the internal validation dataset. Note: Feature 

ranks are not available by MLP.



Supplemental Table 1. CTA Protocols of the Three Medical Centers. 

Parameters Jinling Hospital Tianjin First Center Hospital Taizhou Hospital 

CT scanners 

Somatom Definition Flash or Somatom 

Definition, Siemens Healthcare, 

Forchheim, Germany 

Revolution CT, GE Healthcare, 

USA 

Somatom Definition Flash, Siemens 

Healthcare, Forchheim, Germany  

tube voltage 120 kVp 100 kVp 100 kVp 

tube current 140–180 mAs SmartmA300-500 NI 5 104 mA 

rotation time 0.5 s 0.5 s 0.28 s 

CT detector collimation 64 × 0.6 mm or 64 ×2 × 0.6 mm 128 × 0.625mm 128 × 0.6 

CM type 

Iopromide, Ultravist 300 mg I/mL, 

Bayer Schering Pharma, Berlin, 

Germany 

Iopromide, Ultravist 370 mg I/mL, 

Bayer Schering Pharma, Berlin, 

Germany 

Iopromide, Ultravist 370 mg I/mL, 

Bayer Schering Pharma, Berlin, 

Germany 

CM concentration 300 mg I/ml 370 mg I/ml 370 mg I/ml 

CM dosage 60 ml 50 ml 65 ml 

CM injection rate 4.0 ml/s 4.5 ml/s 4.5 ml/s 

Image matrix 512×512 512 × 512 512 × 512 



Field of view 250 mm 250 mm 250 mm 

Reconstruction thickness 0.75 mm 0.625 mm 0.75 mm 



Supplemental Table 2．Characteristics of Clinical, Morphological and Hemodynamics in 

Unruptured and Ruptured Small Aneurysms in the Internal Dataset. 

Variables  
Unruptured group 

(n=109) 

Ruptured group 

(n=395) 
p-value 

Patient Characteristics   

Age, years  58.3±11.1 54.5±11.8 .003 

Male, n (%)  54(49.5%) 150(38.0%) .030 

Single aneurysms, n 

(%) 
 94(86.2%) 350(88.6%) .499 

SAH family history, n 

(%) 
 0(0.00%) 5(1.3%) .238 

Alcohol intake, n (%)  11(10.1%) 35(8.9%) .693 

Smoking, n (%)  15(13.8%) 41(10.4%) .320 

Hypertension, n (%)  35(32.1%) 171(43.3%) .036 

Diabetes Mellitus, n 

(%) 
 9(8.3%) 15(3.8%) .053 

Ischemic stroke, n (%)  9(8.3%) 6(1.5%) <.001 

Coronary artery 

disease, n (%) 
 7(6.4%) 5 (1.3%) .002 

Aneurysms Characteristics   

Daughter sac, n (%)  0(0%) 10(2.5%) .094 

Size (mm)  3.68±0.80 3.75 (3.00, 4.35) .068 

Regular shape, n (%)  91(83.5%) 321(81.3%) <.001 

Location    <.001 

PCoA, n (%)  31(28.4%) 95(24.1%) .349 



ACoA, n (%)  18(16.5%) 160(40.5%) <.001 

ICA, n (%)  34(31.2%) 31(7.8%) <.001 

MCA, n (%)  11(10.1%) 81(20.5%) .013 

Others, n (%)  15(13.8%) 28(7.1%) .027 

Qualitative Hemodynamic Parameters   

Simple flow, n (%)  73(67.0%) 186(47.1%) <.001 

Concentrated inflow, n 

(%) 
 20(18.3%) 243(61.5%) <.001 

Small flow 

impingement, n (%) 
 31(28.4%) 290(73.4%) <.001 

Stable flow, n (%)  77(70.6%) 170(43.0%) <.001 

Quantitative Hemodynamic Parameters   

PressureCV (×10-2)  0. 78 (0. 42-1.52) 0.58 (0. 21, 1.16) .018 

AWSSMEANCV  0.7580 (0.5867,0.9427) 0.8250 (0.6527, 1.0354) .006 

WSSCV  0.7996 (0.6044, 1.0698) 0.8766 (0.6866, 1.1698) .005 

AWSSABSCV  0.7316 (0.5728, 0.9290) 0.7980 (0.6313, 1.0101) .002 

OSICV  2.1378±0.6034 1.8842±0.5803 <.001 

RRTCV  1.1130 (0.8321, 1.3070) 1.1011 (0.8478, 1.3492) .642 

WSSGCV   1.3028 (1.0968, 1.5403) 1.3980 (1.1405, 1.7250) .027 

AWSSGCV   1.2802 (1.0700, 1.4338) 1.2937 (1.0960, 1.5380) .138 

AFICV(×10-1)  0.670 (0.366, 1.213) 0.873 (0.409, 1.730) .035 

GCV  1.3252 (1.1342, 1.4864) 1.3479 (1.1546, 1.6132) .088 

GONCV  1.2345 (1.1625, 1.2865) 1.2008 (1.1192, 1.2760) .013 

SAH, subarachnoid hemorrhage; ACoA, anterior communicating artery; ICA, internal carotid artery; 
PCoA, posterior communicating artery; ACA, anterior cerebral artery; CV, coefficient of variable; 
WSS, wall shear stress; AWSSMEAN, average of the mean WSS; AWSSABS, averaged WSS- 
absolute; OSI, oscillatory shear index; RRT, relative residence time; WSSG, WSS gradient; AWSSG, 
averaged WSS gradient; AFI, aneurysm formation index; G, spatial WSS gradient; GON, Gradient 



oscillatory number. 



Supplemental Table 3．Characteristics of Patients, Aneurysms and Hemodynamics in the Training, Internal Validation and External Validation 
Dataset.  

Characteristics 
Training set 

(n=410) 

Internal validation set 

(n=94) 
p†-value 

External validation set 

(n=52) 
p‡ -value 

Patient Characteristics     

Ruptured aneurysms, n (%) 320 (81.0%) 75 (79.8%) .712 22 (42.3%) <.001 

Age, years 55.6±12.1 54.2±10.1 .302 53.3±11.9 .208 

Male, n (%) 166 (40.5%) 38 (40.4%) .991 20 (35.5%) .779 

Single aneurysm, n (%) 360 (87.8%) 84 (89.4%) .675 43 (82.7%) .299 

SAH family history, n (%) 5 (1.2%) 0(0%) .282 0 (0%) .424 

Alcohol intake, n (%) 37 (9.0%) 9 (9.6%) .867 5 (9.6%) .889 

Smoking, n (%) 43 (10.5%) 13 (13.8%) .353 7 (13.5%) .516 

Hypertension, n (%) 165 (40.2%) 41 (43.6%) .549 16 (30.8%) .188 

Diabetes Mellitus, n (%) 20 (4.9%) 4 (4.3%) .798 1 (1.9%) .366 

Ischemic stroke, n (%) 13 (3.2%) 2 (2.1%) .592 1 (1.9%) .621 

Coronary artery disease, n 

(%) 

10 (2.4%) 2 (2.1%) .858 5 (9.6%) .006 



Aneurysms Characteristics     

No daughter sac, n (%) 401 (97.8%) 93 (98.9%) .479 44 (84.6%) <.001 

Size (mm), n (%) 3.83 (3.25, 4.48) 3.89 (3.12, 4.24) .519 3.89±0.74 .540 

Regular shape, n (%) 265 (64.6%) 56 (59.6%) .358 32 (61.5%)  

Location   .682  .022 

PCoA, n (%) 102 (24.9%) 24 (25.5%) .895 5 (9.6%) .014 

ACoA, n (%) 142 (34.6%) 36 (38.3%) .503 14 (26.9%) .269 

ICA, n (%) 55 (13.4%) 10 (10.6%) .469 19 (36.5) <.001 

MCA, n (%) 77 (18.8%) 15 (16.0%) .523 12 (23.1%) .460 

Others, n (%) 34 (8.3%) 9 (9.6%) .688 2 (3.8%) .260 

Qualitative Hemodynamic Parameters     

Simple flow, n (%) 208 (50.7%) 51 (54.3%) .538 17 (32.7%) .014 

Concentrated inflow, n (%) 214 (52.2%) 49 (52.1%) .991 8 (15.4%) <.001 

Small flow impingement, n 

(%) 

258 (62.9%) 63 (67.0%) .457 21 (40.4%) .002 

Stable flow, n (%) 201 (49.0%) 46 (48.9%) .988 9 (17.3%) <.001 



Quantitative Hemodynamic Parameters     

PressureCV, (×10-2) 0.62 (0.22, 1.21) 0.70 (0.26, 1.27) .652 0.86 (0.56, 1.40) .007 

AWSSMEANCV  0.8148 (0.6387, 1.0285) 0.7952 (0.5947, 0.9637) .168 0.8737±0.3438 .917 

WSSCV 0.8711 (0.6647, 1.1357) 0.8368 (0.6308, 1.1331) .216 0.8606±0.3079 .149 

AWSSABSCV 0.7894 (0.6229, 1.0011) 0.7608 (0.5730, 0.9464) .147 0.8647±0.3554 .867 

OSICV 1.9531±0.5888 1.8782±0.6158 .271 2.3117±0.6880 <.001 

RRTCV 1.0989 (0.8479, 1.3484) 1.1574 (0.7701, 1.3411) .602 1.3091±0.4615  .010 

WSSGCV  1.3916 (1.1353, 1.6975) 1.3169 (1.0968, 1.6346) .287 1.3828±0.3256 .299 

AWSSGCV 1.2954 (1.0943, 1.5145) 1.2726 (1.0471, 1.4860) .318 1.3208 (1.1211, 1.5387) .431 

AFICV(×10-1) 0.819 (0.415, 1.643) 0.716 (0.339, 1.599) .594 0.672 (0.328,1.157) .107 

GCV 1.3479 (1.1540, 1.5771) 1.3005 (1.0963, 1.5866) .312 1.3753 (1.1530, 1.5670) .636 

GONCV 1.2043 (1.1265, 1.2740) 1.2356 (1.1544, 1.2834) .135 1.2219 (1.1882, 1.2515) .371 

SAH, subarachnoid hemorrhage; ACoA, anterior communicating artery; ICA, internal carotid artery; PCoA, posterior communicating artery; ACA, anterior 
cerebral artery; CV, coefficient of variable; WSS, wall shear stress; AWSSMEAN, average of the mean WSS; AWSSABS, averaged WSS- absolute; OSI, 
oscillatory shear index; RRT, relative residence time; WSSG, WSS gradient; AWSSG, averaged WSS gradient; AFI, aneurysm formation index; G, spatial 
WSS gradient; GON, Gradient oscillatory number. 
†: p <.05 means a significant difference exists in the training dataset and the internal validation dataset. 
‡: p <.05 means a significant difference exists in the training dataset and the general external validation dataset. 



Supplemental Table 4. Characteristics of Clinical, Morphological and Hemodynamic in Internal Dataset and the Separating External Validation 

Dataset.   

Variables Jinling dataset (n,504) 
Taizhou validation set 

(n,22) 
P# value 

Tianjin validation set 

(n,30) 
P*value 

Demographic Information     

Ruptured aneurysms, n (%) 395 (78.4%) 11(50.0%) .002 11 (36.7%) <.001 

Age, years 55.3±11.8 49.2±7.8 .002 56.4±13.6 .635 

Male, n (%) 204(40.5%) 5 (22.7%) .096 15 (50.0%) .303 

Single aneurysm, n (%) 444(88.1%) 16 (72.7%) .033 27 (90.0%) .754 

SAH family history, n (%) 5 (1%) 0 (0%) .639 0 (0%) .584 

Alcohol intake, n (%) 46 (9.1%) 0 (0%) .138 5 (16.7%) .173 

Smoking, n (%) 56 (11.1%) 0 (0%) .098 7 (23.3%) .044 

Hypertension, n (%) 206 (40.9%) 5 (22.7%) .089 11 (36.7) .649 

Diabetes Mellitus, n (%) 24 (4.8%) 0 (0%) .295 1 (3.3%) .719 

Ischemic stroke, n (%) 15 (3.0%) 0 (0%) .412 1 (3.3%) .911 

Coronary artery disease, n (%) 12 (2.4%) 0 (0%) .465 5 (16.7%) <.001 



Aneurysms Characteristics     

Size, mm 3.9 [3.2, 4.4] 3.7±0.8 .577 4.0±0.7 .164 

Regular shape, n (%) 230(58.2 %) 11(50.0%) .193 21(70.0%) .485 

Daughter sac, n (%) 10(2.0%) 7(31.8%) <.001 1(3.3%) .614 

Location   .143  .047 

ACoA, n (%) 178(35.3%) 3(13.6%) .036 11(36.7%) .881 

ICA, n (%) 65(12.9%) 12(54.5%) <.001 7(23.3%) .104 

PCoA, n (%) 126(25.0%) 3(13.6%) .226 2(6.7%) .022 

MCA, n (%) 92(18.3%) 4(18.2%) .993 8(26.7%) .252 

Others, n (%) 43(8.5%) 0(0%) .153 2(6.7%) .721 

Qualitative Hemodynamic Parameters     

Simple flow, n (%) 259(51.4%) 10(45.5%) .586 7(23.3%) .003 

Concentrated inflow, n (%) 263(52.2%) 6(27.3%) .022 2(6.7%) <.001 

Small flow impingement, n (%) 321(63.7%) 12(54.5%) .384 9(30.0%) <.001 

Stable flow, n (%) 247(49.0%) 5(22.7%) .016 4(13.3%) <.001 

Quantitative Hemodynamic Parameters     



PressureCV(×10-2) 0.63 [0.24-1.212] 0.97±0.61 .120 0.87 [0.63, 2.12] .025 

AWSSMEANCV  0.8122 [0.6332, 1.0150] 0.8316±0.3015 .716 0.9045±0.3737 .659 

WSSCV 0.8604 [0.6590, 1.1355] 0.8371±0.2930 .270 0.8166 [0.6720, 1.0347] .449 

AWSSABSCV 0.7828 [0.6147, 0.9851] 0.8205±0.2967 .874 0.8972±0.3948 .513 

OSICV 1.94±0.59 2.4573±0.8170 .008 2.2049±0.5667 .017 

RRTCV 1.1012 [0.8386, 1.3465] 1.2184±0.4616 .421 1.3756±0.4576 .004 

WSSGCV  1.3760 [1.1319, 1.6812] 1.3273±0.2953 .208 1.4235±0.3453 .922 

AWSSGCV  1.2900 [1.0918, 1.5128] 1.3224±0.3047 .840 1.3584 [1.1586, 1.5439] .153 

AFICV(×10-1) 0.779 [0.402, 1.630] 0.784±0.605 .158 0.678 [0.371, 1.222] .398 

GCV 1.3410 [1.1430, 1.5780] 1.3601±0.3042 .636 1.4090 [1.1846, 1.5689] .215 

GONCV 1.2080 [1.1300, 1.2787] 1.2267±0.0781 .219 1.2043 [1.1742, 1.2457] .821 

SAH, subarachnoid hemorrhage; ACoA, anterior communicating artery; ICA, internal carotid artery; PCoA, posterior communicating artery; 

ACA, anterior cerebral artery; CV, coefficient of variable; WSS, wall shear stress; AWSSMEAN, average of the mean WSS; AWSSABS, 

averaged WSS- absolute; OSI, oscillatory shear index; RRT, relative residence time; WSSG, WSS gradient; AWSSG, averaged WSS gradient; 

AFI, aneurysm formation index; G, spatial WSS gradient; GON, Gradient oscillatory number. 
#: p <0.05 means a significant difference exists in the Jinling Hospital and Taizhou validation cohorts. 
*: p <0.05 means a significant difference exists in the Jinling Hospital and Tianjin validation cohorts. 



Supplemental Table 5. Performance of 3 ML Models to Predict Rupture Status of Small Aneurysms in the Training, Internal Validation and 

External Validation Datasets. 
 

Training set 

(n=410) 

 Internal validation set 

(n=94) 

External validation set 

(n=52) 

 Tianjin set 

(n=30) 

 Taizhou set 

(n=22) 

LR         

AUC .88  .91 .78  .66  .89 

95% CI .85-.92  .84-.99 .65-.92  .47-.82  .69-.98 

Sensitivity 81.3%  84.0% 72.7%  63.6%  81.8% 

Specificity 84.4%  84.0% 60.0%  47.4%  81.8% 

Delong test -  - .09§  -  .09∥ 

RF         

AUC .87  .86 .76  .62  .90 

95% CI .83-.91  .78-.96 .63-.90  .42-.79  .70-.99 

Sensitivity 72.2%  73.3% 59.1%  45.5%  72.7% 

Specificity 90.0%  78.9% 76.7%  63.2%  100.0% 

Delong test -  - .23§  -  .03∥ 



SVM         

AUC .88  .91 .82  .71  .90 

95% CI .85-.92  .74-.98 .69-.94  .52-.86  .70-.99 

Sensitivity 73.4%  77.3% 68.2%  54.5%  81.8% 

Specificity 91.1%  84.2% 76.7%  73.7%  81.8% 

Delong test -  - .21§  -  .15∥ 

MLP         

AUC .88  .92 .80  .65  .93 

95% CI .84-.91  .84-.96 .67-.90  .46-.82  .73-.99 

Sensitivity 69.7%  70.7% 68.2%  45.5%  90.9% 

Specificity 93.3%  89.5% 70.0%  63.2%  82.8% 

Delong test -  - .75§  -  03∥ 

§: p <.05 means a significant difference exists in AUCs of the ML in the internal and external validation dataset. 
∥: p <.05 means a significant difference exists in AUCs of the ML in Taizhou set and Tianjin set 
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