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Abstract

In this document, we provide the details about (a) geographically weighted regression, (b)
computations on the space of probability density functions (PDFs), (c) permutation-based
hypothesis tests for PDFs, (d) classification model, and (e) the computation time.
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S1 Geographically Weighted Regression

Geographically weighted regression (GWR) is a spatial analysis technique to study the spatially

varying relationships between the response and covariates in a regression model [1].

Model. The regression model for GWR can be fitted at each observed location of the tumor

pixel from the MRI scans. For each tumor pixel s = 1, . . . , n, where n is the total number of

tumor pixels in the MRI, the GWR model is given as

ys = βs0 + xsβs + εs, (S1)

where ys and xs are the observed response and the predictor/covariate at tumor pixel s, respec-

tively. That is, xs and ys are considered as the intensities of the tumor pixel s from T2 and FLAIR

MR images, respectively. Here, βs0 is the intercept, βs is the regression coefficient, and εs is the

random error. Let xs = (1, xs) and βs = (βs0, βs) be column vectors, then the model in Equation

(S1) can be simplified as ys = x>s βs + εs. The estimated coefficient β̂s at tumor pixel s is given as

β̂s = [X>WsX]−1X>Wsy, where X = [x1; . . . ; xn]> and y = (y1, . . . , yn). Here, Ws is the local

weight matrix computed at each tumor pixel s = 1, . . . , n. Note that the weight matrix is different

for each tumor pixel as it depends on the neighboring tumor pixels, and needs to be computed

separately to compute each β̂s.

Local Weight Matrix. To compute the local weights matrix, Ws, we use a kernel function

that assigns higher weights for other tumor pixels closer to the tumor pixel s, and these weights

decrease as the distance between the tumor pixels increases. A Gaussian kernel is one of the most

commonly used kernel functions and is defined as Wss′ = exp(−d2
ss′/2γ), where dss′ is the distance

between locations s and s′. Here γ is called the bandwidth parameter that controls the range

and decay of the spatial correlation. There are several other choices for the kernel function (e.g.

exponential and bisquare kernels) which can be chosen based on the application. However, the

choice of the bandwidth parameter γ is crucial and is usually estimated based on the data. The

bandwidth parameter can be estimated using different approaches such as direct assignment based

on the number of neighbors of interest [8], cross-validation [1], or corrected Akaike Information

Criterion [3]. We use the latter in our work.
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Residuals. The GWR residuals are scaled between 0 and 1 (using the maximum and minimum

residual values across all the subjects in the training data set) before constructing the PDF.

S2 Computations on the Space of PDFs

Let f be a probability density function (PDF) defined on the domain [0, 1] and F denote the

collection of such PDFs defined as F = {f : [0, 1]→ R+|
∫ 1

0
f(x)dx = 1}.

Space of Square-Root Transformations. We denote the space of SRTs by H = {h : [0, 1]→

R+|
∫ 1

0
h(x)2dx = 1}. The space of the SRTs H represents the positive orthant of a unit Hilbert

sphere [6], and is equipped with the L2 Riemmanian metric. If Th(H) = {δh : [0, 1]→ R|
∫ 1

0
h(x)δh(x)dx =

0} denotes the tangent space of H at the SRT h, then the L2 Riemmanian metric on H can be

defined as 〈〈δh1, δh2〉〉 =
∫ 1

0
δh1(t)δh2(t)dt, where δh1, δh2 ∈ Th(H). The distance between any

two PDFs f1 and f2 can now be computed using the geometry of H equipped with the L2 metric.

That is, the geodesic distance between h1, h2 ∈ H, which are the SRTs corresponding to f1 and

f2, is given as d(h1, h2) = θ = cos−1
( ∫ 1

0
h1(x)h2(x)dx

)
.

Karcher Mean PDF The mean PDF can be computed using the generalized version of the

mean on a metric space called the Karcher mean [4]. Let f1, . . . , fn be a sample of PDFs and

h1, . . . , hn be the corresponding square-root transformations. The sample Karcher mean h̄ on H

is defined as the minimizer of ρ(h) =
∑n

i=1 d(hi, h)2, that is, h̄ = argminh∈H ρ(h). Note that h̄ is

the mean corresponding to the transformations h1, . . . , hn. However, the inverse mapping of the

square-root transformations to the PDFs is unique [5], and we can define f̄ = h̄2 as the average

PDF for the sample f1, . . . , fn.

We present a gradient-based approach to compute the Karcher mean on H [2] in Algorithm

S1. Here the inverse exponential map, denoted by exp−1
h1

: H 7→ Th1(H), is given by exp−1
h1

(h2) =

(θ/ sin(θ))(h2−h1 cos(θ)). The exponential map at a point h1 ∈ H, denoted by exp : Th1(H) 7→ H,

is defined as exph1(δh) = cos(‖δh‖)h1 + sin(‖δh‖)(δh/‖δh‖), where ‖δh‖ =
( ∫ 1

0
δh(x)2dx

)1/2
.

Principal Component Analysis. Below we present an algorithm to compute the principal

coefficients using the PCA.
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Algorithm S1 Sample Karcher mean of densities

1: h̄0 (initial estimate for the Karcher mean) ← any one of the densities in the sample OR the

extrinsic average. Set j ← 0 and ε1, ε2 > 0 be small.

2: For i = 1, . . . , n compute ui = exp−1
h̄j

(hi).

3: Compute the average direction in the tangent space ū = 1
n

∑n
i=1 ui.

4: if ||ū||L2 < ε1 then

5: return h̄j as the Karcher mean.

6: else

7: h̄j+1 = exph̄j(ε2ū).

8: Set j ← j + 1.

9: Return to step 2.

Algorithm S2 PCA on Th̄(H)

1: Compute the Karcher mean of h1, . . . , hn as h̄.

2: for i = 1, . . . , n do

3: Compute projections of hi onto Th̄(H), that is, vi = exp−1
h̄

(hi).

4: Evaluate sample covariance matrix K = 1
n−1

n∑
i=1

viv
>
i ∈ Rm×m.

5: Compute the SVD of K = UΣU>.

In Algorithm S2, U is an orthogonal matrix of principal components or principal directions of

variability, and Σ is a diagonal matrix of singular values. The first r columns of U (denoted as

Ũ ∈ Rm×r) span the r-dimensional principal subspace. The value of r could be chosen to account

for a specified amount (e.g. 99.99%) of cumulative variance explained by the first few principal

components. Hence, the PDFs can now be expressed using coordinates in this subspace via

principal coefficients computed as X = V Ũ , where V > = [v1 v2 . . . vn] ∈ Rm×n. These principal

coefficients X act as Euclidean coordinates corresponding to PDFs and are used as predictors for

downstream analysis.

S3 Permutation-based Hypothesis Tests for PDFs

Let fi denote the PDF for subject i, and ui ∈ {0, 1} denote its group indicator for i = 1, . . . , n.

Let hi denote the SRT for the PDF fi for i = 1, . . . , n. Given a sample of PDFs f1, . . . , fn, we
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have a distance metric and an approach to compute the average PDF. In this section, we build

a permutation-based hypothesis test to investigate any differences between two groups of PDFs.

That is, we want to investigate any differences in the average PDFs of the two groups (e.g. IDH

mutated vs wild-type). To do this, we propose to use a permutation-based hypothesis test which

computes the average PDFs of two groups and uses the distance between the two average PDFs

as the test statistic. We define d0 = d(h̄0, h̄1), where h̄0 and h̄1 are the SRTs corresponding to the

average PDFs for the two groups. This value of d0 serves as our test statistic.

We create the null distribution for the test statistic by randomly permuting the group labels ui

between the subjects. Let (uσ(1), . . . , uσ(n)) denote a random permutation of the group indicators

u1, . . . , un. Using the original PDFs f1, . . . , fn and the permuted group indicators uσ(1), . . . , uσ(n),

we compute the group average PDFs f̄ 0
σ and f̄ 1

σ , and the distance between these average PDFs

as dσ. This process is repeated m times by considering the permutations σ1, . . . , σm. That is,

for each permutation σj we obtain the distance between the group average PDFs as dσj . Here

the distribution generated by dσ1 , . . . , dσm serves as the null distribution for our test statistic d0.

The p-value for this permutation-based hypothesis test can be computed as
∑m

k=1 I(d0 > dσk)/m,

where I(d0 > dσk) = 1 if d0 > dσk , and 0 otherwise.

S4 Classification

Standard classification algorithms (e.g. logistic regression, probit regression) can be employed

when the predictors belong to the Euclidean space. However, in our case the data object cor-

responding to each subject is a PDF (i.e. the residual signature). Hence, we use the following

framework that maps each PDF to a vector of values. We employ principal component analysis

using the PDFs to explore the variability through their primary modes of variation. The space

of PDFs can be linearized by considering the tangent space at the sample average PDF, and

projecting the sample PDFs onto this tangent space [7]. A principal component analysis on this

tangent space provides us with a mapping of the PDFs to a vector in the Euclidean space (details

in Section 3 of Online Supplemental Data).

Hence, the PDFs are mapped to vectors, that is, the principal coefficients through principal

component analysis. These principal coefficients act as Euclidean coordinates corresponding to

PDFs and are used as predictors in classification models. We construct a probit regression model
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which is a generalized linear model used to model a binary categorical variable using numerical

and/or categorical predictors. We model pi = P (yi = 1|xi), the probability that a subject belongs

to the category 1 based on a given set of predictors xi. Specifically, probit regression models

pi = Φ(x>i β), where xi is the ith row in the predictor matrix, β ∈ Rr is the coefficient vector, and

Φ(·) is the cumulative distribution function of a standard normal distribution. We predict the

probability of class membership for a new subject as p̂new = Φ(x>newβ̂), where β̂ are the estimated

coefficients and xnew are the predictors for the new subject. In our context, the predictors xnew

are the principal coefficients corresponding to the PDF fnew obtained by projecting onto the

tangent space generated by the training data set. Note that other prediction models (e.g. logistic

regression, random forests) can also be used with principal coefficients as predictors.

S5 Computation Time

The GWR model estimation can be executed in parallel across all the subjects once the T2 and

FLAIR axial slices of interest are available. We run this step in parallel for four subjects at a time

and the average time taken for this estimation was about 22.5 seconds per subject with a maximum

of 95.3 seconds. In Figure S1 we plot the time taken for the GWR model estimation versus the

number of tumor pixels for all the subjects considered for our analysis. The computations were

performed on a standard computer with an Intel(R) Core(TM) i7-7700 CPU @ 3.60GHz, 3601

Mhz, 4 cores, 8 logical processors with 32 GB RAM. Additionally, the time taken for computation

of p-values based on the permutation tests increases as the number of permutations increase.
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Figure S1: Time taken for the GWR model estimation versus tumor size for each subject.
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S6 Supplementary Figure
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Figure S2: Average PDFs or averages of the residual signatures for each group across the six

groupings (A)-(F).
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