Top performing model for each feature set, along with the 3 other data-preprocessing results using the same modeling strategy (external data)
Feature Set | Processing | Algorithm | Feature Selection | mAUC | LogLoss | Brier Score | Best Model |
---|---|---|---|---|---|---|---|
CE_ET and F_PTRa | None/none | SVM-P | ICC | 0.818 | 0.929 | 0.548 | False |
SD/noneb | SVM-P | ICC | 0.833 | 0.871 | 0.521 | True | |
None/ComBat | SVM-P | ICC | 0.808 | 1.029 | 0.588 | False | |
SD/ComBat | SVM-P | ICC | 0.817 | 0.949 | 0.564 | False | |
CE_ET and T2_PTRa | None/none | ENET | None | 0.808 | 0.904 | 0.520 | False |
SD/none | ENET | None | 0.817 | 0.867 | 0.499 | False | |
None/ComBatb | ENET | None | 0.841 | 0.922 | 0.492 | True | |
SD/ ComBat | ENET | None | 0.835 | 0.891 | 0.487 | False | |
CE_ET, A_ET and F_PTRa | None/none | SVM-P | ICC | 0.873 | 0.764 | 0.433 | False |
SD/noneb | SVM-P | ICC | 0.886 | 0.712 | 0.414 | True | |
None/ComBat | SVM-P | ICC | 0.836 | 0.872 | 0.520 | False | |
SD/ ComBat | SVM-P | ICC | 0.873 | 0.749 | 0.444 | False | |
CE_ETa | None/none | SVM-P | ICC | 0.819 | 0.881 | 0.499 | False |
SD/Noneb | SVM-P | ICC | 0.859 | 0.789 | 0.472 | True | |
None/ComBat | SVM-P | ICC | 0.821 | 0.962 | 0.531 | False | |
SD/ ComBat | SVM-P | ICC | 0.842 | 0.850 | 0.512 | False |