- Diagnostic Impact of Intracranial Vessel Wall MRI in 205 Patients with Ischemic Stroke or TIA
This was a single-center, retrospective study of 205 consecutive patients who were referred for vessel wall MR imaging to clarify the etiology of an ischemic stroke or TIA. An expert panel classified stroke etiology before and after incorporating vessel wall MR imaging results using a modified Trial of Org 10172 in Acute Stroke Treatment system. Vessel wall MR imaging altered the etiologic classification in 55% (112/205) of patients. The proportion of patients classified as having intracranial arteriopathy not otherwise specified decreased from 31% to 4% (64/205 versus 9/205) and the proportion classified as having intracranial atherosclerotic disease increased from 23% to 57%. When vessel wall MR imaging is performed to clarify the etiology of a stroke or TIA, it frequently alters the etiologic classification, which is the basis for therapeutic decision-making.
- Automatic Spinal Cord Gray Matter Quantification: A Novel Approach
The authors assessed the reproducibility and accuracy of cervical spinal cord gray matter and white matter cross-sectional area measurements using magnetization inversion recovery acquisition images and a fully automatic postprocessing segmentation algorithm. The cervical spinal cord of 24 healthy subjects was scanned in a test-retest fashion on a 3T MR imaging system. Twelve axial averaged magnetization inversion recovery acquisition slices were acquired over a 48-mm cord segment. GM and WM were both manually segmented by 2 experienced readers and compared with an automatic variational segmentation algorithm with a shape prior modified for 3D data with a slice similarity prior. Reproducibility was high for both methods, while being better for the automatic approach. The accuracy of the automatic method compared with the manual reference standard was excellent. They conclude that the fully automated postprocessing segmentation algorithm demonstrated an accurate and reproducible spinal cord GM and WM segmentation.
- Comparative Analysis of Volumetric High-Resolution Heavily T2-Weighted MRI and Time-Resolved Contrast-Enhanced MRA in the Evaluation of Spinal Vascular Malformations
The authors compared the efficacy of volumetric high-resolution heavily T2-weighted and time-resolved contrast-enhanced images in spinal vascular malformation diagnosis and feeder characterization and assessed whether a combined evaluation improved the overall accuracy of diagnosis in 28 patients. Both sequences demonstrated 100% sensitivity and 93.5% accuracy for the detection of spinal vascular malformations. Volumetric high-resolution heavily T2-weighted imaging was superior to time-resolved contrast-enhanced MR imaging for identification of spinal cord arteriovenous malformations while the opposite was observed for perimedullary arteriovenous fistulas. Both sequences showed equal sensitivity (100%) and accuracy (87%) for spinal dural arteriovenous fistulas. They conclude that combined volumetric high-resolution heavily T2-weighted imaging and time-resolved contrast-enhanced MR imaging can improve the sensitivity and accuracy of spinal vascular malformation diagnosis, classification, and feeder characterization.