Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Research ArticleBrain

Assessing Tissue Viability with MR Diffusion and Perfusion Imaging

Pamela W. Schaefer, Yelda Ozsunar, Julian He, Leena M. Hamberg, George J. Hunter, A. Gregory Sorensen, Walter J. Koroshetz and R. Gilberto Gonzalez
American Journal of Neuroradiology March 2003, 24 (3) 436-443;
Pamela W. Schaefer
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yelda Ozsunar
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Julian He
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Leena M. Hamberg
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
George J. Hunter
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A. Gregory Sorensen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Walter J. Koroshetz
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R. Gilberto Gonzalez
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

Abstract

BACKGROUND AND PURPOSE: Diffusion- (DW) and perfusion-weighted (PW) MR imaging reflect neurophysiologic changes during stroke evolution. We sought to determine parameters that distinguish regions of brain destined for infarction from those that will survive despite hypoperfusion.

METHODS: DW and PW images were obtained in 30 patients at 1–12 hours after symptom onset. Relative cerebral blood volume (rCBV), flow (rCBF), mean transit time (MTT), apparent diffusion coefficient (ADC), DW image signal intensity, and fractional anisotropy (FA) lesion-contralateral normal region ratios were obtained in the following regions: 1) infarct core with hyperintensity on DW image, abnormality on rCBF and MTT images, and follow-up abnormality; 2) infarcted penumbra with normal DW image, abnormal rCBF and MTT images, and follow-up abnormality; and 3) hypoperfused tissue that remained viable, with normal DW image, abnormal rCBF and MTT images, and normal follow-up.

RESULTS: rCBF ratios for regions 1, 2, and 3 were 0.32 ± 0.11, 0.46 ± 0.13, and 0.58 ± 0.12, respectively, and were significantly different. DW image intensity and ADC ratios were significantly different among all regions, but were more similar than rCBF ratios. rCBV and FA ratios were not significantly different between regions 2 and 3. No MTT ratios were significantly different. No region of interest with an rCBF ratio less than 0.36, an rCBV ratio less than 0.53, an ADC ratio less than 0.85, a DW image intensity ratio greater than 1.23, or an FA ratio greater than 1.10 remained viable. No region of interest with an rCBF ratio greater than 0.79 infarcted.

CONCLUSIONS: Differences among mean ratios of three regions investigated were greatest for the rCBF ratio. The rCBF ratio may be the most useful parameter in differentiating viable tissue that is likely to infarct without intervention, from tissue that will survive despite hypoperfusion. ADC, DW intensity, FA, and rCBV ratios may provide adjunctive information.

  • Copyright © American Society of Neuroradiology
View Full Text
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 24 (3)
American Journal of Neuroradiology
Vol. 24, Issue 3
1 Mar 2003
  • Table of Contents
  • Index by author
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Assessing Tissue Viability with MR Diffusion and Perfusion Imaging
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
Pamela W. Schaefer, Yelda Ozsunar, Julian He, Leena M. Hamberg, George J. Hunter, A. Gregory Sorensen, Walter J. Koroshetz, R. Gilberto Gonzalez
Assessing Tissue Viability with MR Diffusion and Perfusion Imaging
American Journal of Neuroradiology Mar 2003, 24 (3) 436-443;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Assessing Tissue Viability with MR Diffusion and Perfusion Imaging
Pamela W. Schaefer, Yelda Ozsunar, Julian He, Leena M. Hamberg, George J. Hunter, A. Gregory Sorensen, Walter J. Koroshetz, R. Gilberto Gonzalez
American Journal of Neuroradiology Mar 2003, 24 (3) 436-443;
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Methods
    • Results
    • Discussion
    • Conclusion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Incorporation of relative cerebral blood flow into CT perfusion maps reduces false at risk' penumbra
  • MRI Biomarkers in Acute Ischemic Stroke: A Conceptual Framework and Historical Analysis
  • Acute Stroke Imaging: CT with CT Angiography and CT Perfusion before Management Decisions
  • Acute Damage to the Posterior Limb of the Internal Capsule on Diffusion Tensor Tractography as an Early Imaging Predictor of Motor Outcome after Stroke
  • Hyperglycemia and the Fate of Apparent Diffusion Coefficient-Defined Ischemic Penumbra
  • Cerebral Blood Flow Thresholds for Tissue Infarction in Patients with Acute Ischemic Stroke Treated with Intra-Arterial Revascularization Therapy Depend on Timing of Reperfusion
  • Low Cerebral Blood Volume Is Predictive of Diffusion Restriction Only in Hyperacute Stroke
  • Prevalence and Predictors of Paroxysmal Atrial Fibrillation on Holter Monitor in Patients With Stroke or Transient Ischemic Attack
  • Early Experience of Translating pH-Weighted MRI to Image Human Subjects at 3 Tesla
  • Recommendations for Imaging of Acute Ischemic Stroke: A Scientific Statement From the American Heart Association
  • Diffusion tensor imaging may help the determination of time at onset in cerebral ischaemia
  • Does Diffusion-Weighted Imaging Represent the Ischemic Core? An Evidence-Based Systematic Review
  • Middle Cerebral Artery Infarcts Encompassing the Insula Are More Prone to Growth
  • Conversion of Ischemic Brain Tissue Into Infarction Increases With Age
  • Apparent Diffusion Coefficient Thresholds Do Not Predict the Response to Acute Stroke Thrombolysis
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • Evaluating the Effects of White Matter Multiple Sclerosis Lesions on the Volume Estimation of 6 Brain Tissue Segmentation Methods
  • Quiet PROPELLER MRI Techniques Match the Quality of Conventional PROPELLER Brain Imaging Techniques
  • Predictors of Reperfusion in Patients with Acute Ischemic Stroke
Show more Brain

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire