Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • AJNR Case Collection
    • Case of the Week Archive
    • Classic Case Archive
    • Case of the Month Archive
  • Special Collections
    • Spinal CSF Leak Articles (Jan 2020-June 2024)
    • 2024 AJNR Journal Awards
    • Most Impactful AJNR Articles
  • Multimedia
    • AJNR Podcast
    • AJNR Scantastics
    • Video Articles
  • For Authors
    • Submit a Manuscript
    • Author Policies
    • Fast publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Manuscript Submission Guidelines
    • Imaging Protocol Submission
    • Submit a Case for the Case Collection
  • About Us
    • About AJNR
    • Editorial Board
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Other Publications
    • ajnr

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • AJNR Case Collection
    • Case of the Week Archive
    • Classic Case Archive
    • Case of the Month Archive
  • Special Collections
    • Spinal CSF Leak Articles (Jan 2020-June 2024)
    • 2024 AJNR Journal Awards
    • Most Impactful AJNR Articles
  • Multimedia
    • AJNR Podcast
    • AJNR Scantastics
    • Video Articles
  • For Authors
    • Submit a Manuscript
    • Author Policies
    • Fast publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Manuscript Submission Guidelines
    • Imaging Protocol Submission
    • Submit a Case for the Case Collection
  • About Us
    • About AJNR
    • Editorial Board
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

Welcome to the new AJNR, Updated Hall of Fame, and more. Read the full announcements.


AJNR is seeking candidates for the position of Associate Section Editor, AJNR Case Collection. Read the full announcement.

 

Getting new auth cookie, if you see this message a lot, tell someone!
Research ArticlePediatrics
Open Access

Voxel-Based Analysis of T2 Hyperintensities in White Matter during Treatment of Childhood Leukemia

W.E. Reddick, J.O. Glass, D.P. Johnson, F.H. Laningham and C.-H. Pui
American Journal of Neuroradiology November 2009, 30 (10) 1947-1954; DOI: https://doi.org/10.3174/ajnr.A1733
W.E. Reddick
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J.O. Glass
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D.P. Johnson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
F.H. Laningham
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C.-H. Pui
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Pui C-H,
    2. Evans WE
    . Treatment of acute lymphoblastic leukemia. N Engl J Med 2006;354:166–78
    CrossRefPubMedWeb of Science
  2. 2.↵
    1. Shuper A,
    2. Stark B,
    3. Kornreich L,
    4. et al
    . Methotrexate-related neurotoxicity in the treatment of childhood acute lymphoblastic leukemia. Isr Med Assoc J 2002;4:1050–53
    PubMedWeb of Science
  3. 3.↵
    1. Reddick WE,
    2. Shan ZY,
    3. Glass JO,
    4. et al
    . Smaller white matter volumes are associated with larger deficits in attention and learning among long-term survivors of acute lymphoblastic leukemia. Cancer 2006;106:941–49
    CrossRefPubMedWeb of Science
  4. 4.↵
    1. Reddick WE,
    2. Glass JO,
    3. Helton KJ,
    4. et al
    . Prevalence of leukoencephalopathy in children treated for acute lymphoblastic leukemia with high-dose methotrexate. AJNR Am J Neuroradiol 2005;26:1263–69
    Abstract/FREE Full Text
  5. 5.↵
    1. Reddick WE,
    2. Glass JO,
    3. Helton KJ,
    4. et al
    . A quantitative MRI assessment of leukoencephalopathy in children treated for acute lymphoblastic leukemia without irradiation. AJNR Am J Neuroradiol 2005;26:2371–77
    Abstract/FREE Full Text
  6. 6.↵
    1. Reddick WE,
    2. Laningham FH,
    3. Glass JO,
    4. et al
    . Quantitative morphologic evaluation of magnetic resonance imaging during and after treatment of childhood leukemia. Neuroradiology 2007;49:889–904
    CrossRefPubMed
  7. 7.↵
    1. Pui C-H,
    2. Relling MV,
    3. Sandlund JT,
    4. et al
    . Rationale and design of total therapy study XV for newly diagnosed childhood acute lymphoblastic leukemia. Ann Hematol 2004;83:124–26
    CrossRefPubMed
  8. 8.↵
    1. Rueckert D,
    2. Frangi AF,
    3. Schnabel JA
    . Automatic construction of 3-D statistical deformation models of the brain using nonrigid registration. IEEE Trans Med Imaging 2003;22:1014–25
    CrossRefPubMedWeb of Science
  9. 9.↵
    1. Zhang Y,
    2. Zuo P,
    3. Mulhern RK,
    4. et al
    . Brain structural abnormalities in survivors of pediatric posterior fossa brain tumors: a voxel-based morphometry study using free-form deformation. Neuroimage 2008;42:218–29
    CrossRefPubMedWeb of Science
  10. 10.↵
    1. Lee JE,
    2. Chung MK,
    3. Lazar M,
    4. et al
    . A study of diffusion tensor imaging by tissue-specific, smoothing-compensated voxel-based analysis. Neuroimage 2009;44:870–83
    CrossRefPubMedWeb of Science
  11. 11.↵
    1. Rutgers DR,
    2. Toulgoat F,
    3. Cazejust J,
    4. et al
    . White matter abnormalities in mild traumatic brain injury: a diffusion tensor imaging study. AJNR Am J Neuroradiol 2008;29:514–19
    Abstract/FREE Full Text
  12. 12.↵
    1. Xie S,
    2. Xiao JX,
    3. Gong GL,
    4. et al
    . Voxel-based detection of white matter abnormalities in mild Alzheimer disease. Neurology 2006;66:1845–49
    Abstract/FREE Full Text
  13. 13.↵
    1. Genovese CR,
    2. Lazar NA,
    3. Nichols T
    . Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage 2002;15:870–78
    CrossRefPubMedWeb of Science
  14. 14.↵
    1. Chu WC,
    2. Chik KW,
    3. Chan YL,
    4. et al
    . White matter and cerebral metabolite changes in children undergoing treatment for acute lymphoblastic leukemia: longitudinal study with MR imaging and 1H MR spectroscopy. Radiology 2003;229:659–69
    CrossRefPubMedWeb of Science
  15. 15.↵
    1. Harila-Saari A,
    2. Paakko E,
    3. Vainionpaa L,
    4. et al
    . A longitudinal magnetic resonance imaging study of the brain in survivors of childhood acute lymphoblastic leukemia. Cancer 1998;83:2608–17
    CrossRefPubMed
  16. 16.↵
    1. Hertzberg H,
    2. Huk WJ,
    3. Ueberall MA,
    4. et al
    . CNS late effects after ALL therapy in childhood. Part 1: neuroradiological findings in long-term survivors of childhood ALL—an evaluation of the interferences between morphology and neuropsychological performance. Med Pediatr Oncol 1997;28:387–400
    CrossRefPubMedWeb of Science
  17. 17.↵
    1. Paakko E,
    2. Harila-Saari A,
    3. Vanionpaa L,
    4. et al
    . White matter changes on MRI during treatment in children with acute lymphoblastic leukemia: correlation with neuropsychological findings. Med Pediatr Oncol 2000;35:456–61
    CrossRefPubMedWeb of Science
  18. 18.↵
    1. Lesnik PG,
    2. Ciesielski KT,
    3. Hart BL,
    4. et al
    . Evidence for cerebellar-frontal subsystem changes in children treated with intrathecal chemotherapy for leukemia. Arch Neurol 1998;55:1561–68
    CrossRefPubMedWeb of Science
  19. 19.↵
    1. Carey ME,
    2. Haut MW,
    3. Reminger SL,
    4. et al
    . Reduced frontal white matter volume in long-term childhood leukemia survivors: a voxel-based morphometry study. AJNR Am J Neuroradiol 2008;29:792–97
    Abstract/FREE Full Text
  20. 20.↵
    1. Mabbott DJ,
    2. Noseworthy M,
    3. Bouffet E,
    4. et al
    . White matter growth as a mechanism of cognitive development in children. Neuroimage 2006;33:936–46
    CrossRefPubMedWeb of Science
  21. 21.↵
    1. Campell LK,
    2. Scaduto M,
    3. Sharp W,
    4. et al
    . A meta-analysis of the neurocognitve sequelae of treatment for childhood acute lymphocytic leukemia. Pediatr Blood Cancer 2007;49:65–73
    CrossRefPubMedWeb of Science
  22. 22.↵
    1. Moleski M
    . Neuropsychological, neuroanatomical, and neurophysiological consequences of CNS chemotherapy for acute lymphoblastic leukemia. Arch Clin Neuropsychol 2000;15:603–30
    Abstract/FREE Full Text
  23. 23.↵
    1. Mulhern RK,
    2. Wasserman AL,
    3. Fairclough D,
    4. et al
    . Memory function in disease-free survivors of childhood acute lymphocytic leukemia given CNS prophylaxis with or without 1,800 cGy cranial irradiation. J Clin Oncol 1988;6:315–20
    Abstract
  24. 24.↵
    1. Nathan PC,
    2. Patel SK,
    3. Dilley K,
    4. et al
    . Guidelines for identification of, advocacy for, and intervention in neurocognitive problems in survivors of childhood cancer: a report from the Children's Oncology Group. Arch Pediatr Adolesc Med 2007;161:798–806
    CrossRefPubMedWeb of Science
  25. 25.↵
    1. Hockenberry MJ,
    2. Krull KR,
    3. Moore K,
    4. et al
    . Longitudinal evaluation of fine motor skills in children with leukemia. J Pediatr Hematol Oncol 2007;29:535–39
    CrossRefPubMed
  26. 26.↵
    1. Brown RT,
    2. Madan-Swain A,
    3. Walco GA,
    4. et al
    . Cognitive and academic late effects among children previously treated for acute lymphocytic leukemia receiving chemotherapy as CNS prophylaxis. J Pediatr Psychol 1998;23:333–40
    Abstract/FREE Full Text
  27. 27.↵
    1. Montour-Proulx I,
    2. Kuehn SM,
    3. Keene DL,
    4. et al
    . Cognitive changes in children treated for acute lymphoblastic leukemia with chemotherapy only according to the Pediatric Oncology Group 9605 protocol. J Child Neurol 2005;20:129–33
    Abstract/FREE Full Text
  28. 28.↵
    1. Espy KA,
    2. Moore IM,
    3. Kaufmann PM,
    4. et al
    . Chemotherapeutic CNS prophylaxis and neuropsychologic change in children with acute lymphoblastic leukemia: a prospective study. J Pediatr Psychol 2001;26:1–9
    Abstract/FREE Full Text
  29. 29.↵
    1. Kaemingk KL,
    2. Carey ME,
    3. Moore IM,
    4. et al
    . Math weaknesses in survivors of acute lymphoblastic leukemia compared to healthy children. Child Neuropsychology 2004;10:14–23
    PubMedWeb of Science
  30. 30.↵
    1. Carey ME,
    2. Hockenberry MJ,
    3. Moore IM,
    4. et al
    . Brief report: Effect of intravenous methotrexate dose and infusion rate on neuropsychological function one year after diagnosis of acute lymphoblastic leukemia. J Pediatr Psychol 2007;32:189–93
    Abstract/FREE Full Text
  31. 31.↵
    1. Plotkin SR,
    2. Wen PY
    . Neurologic complications of cancer therapy. Neurol Clin N Am 2003;21:279–318
  32. 32.↵
    1. Basser PJ,
    2. Jones DK
    . Diffusion-tensor MRI: theory, experimental design and data analysis—a technical review. NMR Biomed 2002;15:456–67
    CrossRefPubMedWeb of Science
  33. 33.↵
    1. Leung LH,
    2. Ooi G-C,
    3. Kwong DL,
    4. et al
    . White-matter diffusion anisotropy after chemo-irradiation: a statistical parametric mapping study and histogram analysis. Neuroimage 2004;21:261–68
    CrossRefPubMedWeb of Science
  34. 34.↵
    1. Khong P-L,
    2. Leung LH,
    3. Fung AS,
    4. et al
    . White matter anisotropy in post-treatment childhood cancer survivors: preliminary evidence of association with neurocognitive function. J Clin Oncol 2006;24:884–90
    Abstract/FREE Full Text
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 30 (10)
American Journal of Neuroradiology
Vol. 30, Issue 10
1 Nov 2009
  • Table of Contents
  • Index by author
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Voxel-Based Analysis of T2 Hyperintensities in White Matter during Treatment of Childhood Leukemia
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
W.E. Reddick, J.O. Glass, D.P. Johnson, F.H. Laningham, C.-H. Pui
Voxel-Based Analysis of T2 Hyperintensities in White Matter during Treatment of Childhood Leukemia
American Journal of Neuroradiology Nov 2009, 30 (10) 1947-1954; DOI: 10.3174/ajnr.A1733

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Voxel-Based Analysis of T2 Hyperintensities in White Matter during Treatment of Childhood Leukemia
W.E. Reddick, J.O. Glass, D.P. Johnson, F.H. Laningham, C.-H. Pui
American Journal of Neuroradiology Nov 2009, 30 (10) 1947-1954; DOI: 10.3174/ajnr.A1733
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Conclusions
    • Acknowledgment
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Chemotherapy Pharmacodynamics and Neuroimaging and Neurocognitive Outcomes in Long-Term Survivors of Childhood Acute Lymphoblastic Leukemia
  • Accelerated Aging, Decreased White Matter Integrity, and Associated Neuropsychological Dysfunction 25 Years After Pediatric Lymphoid Malignancies
  • Crossref (31)
  • Google Scholar

This article has been cited by the following articles in journals that are participating in Crossref Cited-by Linking.

  • GAT: A Graph-Theoretical Analysis Toolbox for Analyzing Between-Group Differences in Large-Scale Structural and Functional Brain Networks
    S. M. Hadi Hosseini, Fumiko Hoeft, Shelli R. Kesler, Renaud Lambiotte
    PLoS ONE 2012 7 7
  • Chemotherapy Pharmacodynamics and Neuroimaging and Neurocognitive Outcomes in Long-Term Survivors of Childhood Acute Lymphoblastic Leukemia
    Kevin R. Krull, Yin Ting Cheung, Wei Liu, Slim Fellah, Wilburn E. Reddick, Tara M. Brinkman, Cara Kimberg, Robert Ogg, Deokumar Srivastava, Ching-Hon Pui, Leslie L. Robison, Melissa M. Hudson
    Journal of Clinical Oncology 2016 34 22
  • Accelerated Aging, Decreased White Matter Integrity, and Associated Neuropsychological Dysfunction 25 Years After Pediatric Lymphoid Malignancies
    Ilse Schuitema, Sabine Deprez, Wim Van Hecke, Marita Daams, Anne Uyttebroeck, Stefan Sunaert, Frederik Barkhof, Eline van Dulmen-den Broeder, Helena J. van der Pal, Cor van den Bos, Anjo J.P. Veerman, Leo M.J. de Sonneville
    Journal of Clinical Oncology 2013 31 27
  • Attention and working memory abilities in children treated for acute lymphoblastic leukemia
    Jason Ashford, Corrie Schoffstall, Wilburn E. Reddick, Christina Leone, Fred H. Laningham, John O. Glass, Deqing Pei, Cheng Cheng, Ching‐Hon Pui, Heather M. Conklin
    Cancer 2010 116 19
  • Neurodevelopmental consequences of pediatric cancer and its treatment: applying an early adversity framework to understanding cognitive, behavioral, and emotional outcomes
    Hilary A. Marusak, Allesandra S. Iadipaolo, Felicity W. Harper, Farrah Elrahal, Jeffrey W. Taub, Elimelech Goldberg, Christine A. Rabinak
    Neuropsychology Review 2018 28 2
  • Impact of Chemotherapy for Childhood Leukemia on Brain Morphology and Function
    Marina Genschaft, Thomas Huebner, Franziska Plessow, Vasiliki N. Ikonomidou, Nasreddin Abolmaali, Franziska Krone, Andre Hoffmann, Elisabeth Holfeld, Peter Vorwerk, Christof Kramm, Bernd Gruhn, Elisabeth Koustenis, Pablo Hernaiz-Driever, Rakesh Mandal, Meinolf Suttorp, Thomas Hummel, Chrysanthy Ikonomidou, Clemens Kirschbaum, Michael N. Smolka, Christian Beaulieu
    PLoS ONE 2013 8 11
  • Cognitive reserve and brain volumes in pediatric acute lymphoblastic leukemia
    Shelli R. Kesler, Hiroko Tanaka, Della Koovakkattu
    Brain Imaging and Behavior 2010 4 3-4
  • Cortical surface area and thickness in adult survivors of pediatric acute lymphoblastic leukemia
    Christian K. Tamnes, Bernward Zeller, Inge K. Amlien, Adriani Kanellopoulos, Stein Andersson, Paulina Due‐Tønnessen, Ellen Ruud, Kristine B. Walhovd, Anders M. Fjell
    Pediatric Blood & Cancer 2015 62 6
  • Altered resting state functional connectivity in young survivors of acute lymphoblastic leukemia
    Shelli R. Kesler, Meike Gugel, Mika Pritchard‐Berman, Clement Lee, Emily Kutner, S.M. Hadi Hosseini, Gary Dahl, Norman Lacayo
    Pediatric Blood & Cancer 2014 61 7
  • Brain structure, working memory and response inhibition in childhood leukemia survivors
    Ellen van der Plas, Russell J. Schachar, Johann Hitzler, Jennifer Crosbie, Sharon L. Guger, Brenda J. Spiegler, Shinya Ito, Brian J. Nieman
    Brain and Behavior 2017 7 2

More in this TOC Section

  • Comparison of Image Quality and Radiation Dose in Pediatric Temporal Bone CT Using Photon-Counting Detector CT and Energy-Integrating Detector CT
  • SyMRI & MR Fingerprinting in Brainstem Myelination
  • Neonatal Hypocalcemia: Cerebral MRI Abnormalities
Show more Pediatrics

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editors Choice
  • Fellow Journal Club
  • Letters to the Editor

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

Special Collections

  • Special Collections

Resources

  • News and Updates
  • Turn around Times
  • Submit a Manuscript
  • Author Policies
  • Manuscript Submission Guidelines
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Submit a Case
  • Become a Reviewer/Academy of Reviewers
  • Get Peer Review Credit from Publons

Multimedia

  • AJNR Podcast
  • AJNR SCANtastic
  • Video Articles

About Us

  • About AJNR
  • Editorial Board
  • Not an AJNR Subscriber? Join Now
  • Alerts
  • Feedback
  • Advertise with us
  • Librarian Resources
  • Permissions
  • Terms and Conditions

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire