Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Review ArticleReview Articles
Open Access

The Present and the Future of Neuroimaging in Amyotrophic Lateral Sclerosis

F. Agosta, A. Chiò, M. Cosottini, N. De Stefano, A. Falini, M. Mascalchi, M.A. Rocca, V. Silani, G. Tedeschi and M. Filippi
American Journal of Neuroradiology November 2010, 31 (10) 1769-1777; DOI: https://doi.org/10.3174/ajnr.A2043
F. Agosta
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A. Chiò
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M. Cosottini
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
N. De Stefano
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A. Falini
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M. Mascalchi
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M.A. Rocca
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
V. Silani
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
G. Tedeschi
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M. Filippi
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

Article Figures & Data

Figures

  • Fig 1.
    • Download figure
    • Open in new tab
    • Download powerpoint
    Fig 1.

    Conventional MR imaging findings in patients with ALS. A−D, Hyperintensity at the subcortical precentral gyrus (A and B) and the centrum semiovale (C and D) on FLAIR (arrows, A and C) and T2-weighted (arrows, B and D) images of a 66-year-old patient with ALS. Modified with permission from Hecht et al.17 E and F, T2-weighted images obtained from a 58-year-old patient with ALS with dementia show hypointensity along the precentral cortices (arrowheads, E) and symmetric hyperintensity in the anterior temporal subcortical WM (arrows, F). A and D reprinted with permission from the Journal of the Neurological Sciences (2001;186:37–44). Copyright 2001, Elsevier Ltd.

  • Fig 2.
    • Download figure
    • Open in new tab
    • Download powerpoint
    Fig 2.

    Regional GM atrophy in patients with ALS compared with controls. A group comparison of 17 patients with ALS versus 17 healthy controls37 shows regional GM atrophy in the precentral and postcentral gyri bilaterally, which extends from the primary motor cortex to the premotor, parietal, and frontal regions bilaterally (displayed at P = .001, uncorrected; extended threshold, 100 voxels). The color bar represents the t-score. The differences between groups are superimposed on a standard normalized T1-weighted image. Images are shown in neurologic convention.

  • Fig 3.
    • Download figure
    • Open in new tab
    • Download powerpoint
    Fig 3.

    A, A representative example of DTI tractography of the CST. B, Graphs of mean FA in the right and left CSTs of 28 patients with ALS (green) and 26 healthy controls (blue). Data are presented for the entire CST (mean) and its pre- and postcentral portions. Mean values are shown with SDs (black lines). Significant differences in diffusion parameters between groups are indicated by a red asterisk. Reprinted with permission from Neuroimage (2007;34:486–99). Copyright 2007, Elsevier Ltd.

  • Fig 4.
    • Download figure
    • Open in new tab
    • Download powerpoint
    Fig 4.

    A and B, Illustrative examples of MD (images on the left of each pair) and FA (images on the right of each pair) maps of the cervical cord obtained from a healthy volunteer (A) and a patient with ALS (B). C, Scatterplot of the correlation between the cervical cord FA and the ALSFRS in 28 patients with ALS. Reprinted with permission from the Journal of Neurology, Neurosurgery & Psychiatry (2007;78:480–84). Copyright 2007, BMJ Publishing Group Ltd.

  • Fig 5.
    • Download figure
    • Open in new tab
    • Download powerpoint
    Fig 5.

    A, Brain regions showing a significant increased recruitment on fMRI scans from 10 patients with ALS relative to 10 healthy controls during right-handed movement (P < .05, small volume correction). Modified with permission from Konrad et al.83 B and C, Areas of reduced fMRI activation in 28 nondemented patients with ALS relative to the control group during letter fluency (B) and confrontation naming (C) tasks. A reprinted with permission from Experimental Brain Research (2006;172:361–69). Copyright 2006, Springer Science + Business Media. B and C reprinted with permission from Brain (2004;127:1507–17). Copyright 2004, Oxford University Press.

  • Fig 6.
    • Download figure
    • Open in new tab
    • Download powerpoint
    Fig 6.

    Regions showing progression of GM atrophy during a 9-month period90 in 16 patients with ALS compared with 10 controls (red) and regions showing additional GM loss in clinically rapidly progressing patients with ALS compared with both controls and nonrapidly progressing patients (green). A and B, Results are superimposed on the 3D rendering of the Montreal Neurologic Institute standard brain and displayed at a threshold of P < .05, uncorrected. Color saturation depends on the position of the brain region in relation to the cortical surface in the rendered brain (ie, motor, premotor, and prefrontal regions are more saturated; basal ganglia are less saturated). C and D, Plots showing the “size of effect” in the left premotor and motor cortices for each group of subjects (healthy controls, patients with rapidly progressing ALS, and those with nonrapidly progressing ALS). The “size of the effect” was obtained by plotting the estimates of the analysis of variance model parameters, which were of interest in the present analysis (3 subject groups). The bars represent the 90% confidence intervals. Reprinted with permission from Amyotrophic Lateral Sclerosis (2009;10:168–74). Copyright 2009, Taylor and Francis.

PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 31 (10)
American Journal of Neuroradiology
Vol. 31, Issue 10
1 Nov 2010
  • Table of Contents
  • Index by author
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
The Present and the Future of Neuroimaging in Amyotrophic Lateral Sclerosis
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
F. Agosta, A. Chiò, M. Cosottini, N. De Stefano, A. Falini, M. Mascalchi, M.A. Rocca, V. Silani, G. Tedeschi, M. Filippi
The Present and the Future of Neuroimaging in Amyotrophic Lateral Sclerosis
American Journal of Neuroradiology Nov 2010, 31 (10) 1769-1777; DOI: 10.3174/ajnr.A2043

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
The Present and the Future of Neuroimaging in Amyotrophic Lateral Sclerosis
F. Agosta, A. Chiò, M. Cosottini, N. De Stefano, A. Falini, M. Mascalchi, M.A. Rocca, V. Silani, G. Tedeschi, M. Filippi
American Journal of Neuroradiology Nov 2010, 31 (10) 1769-1777; DOI: 10.3174/ajnr.A2043
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • Abbreviations
    • Conventional MR Imaging Findings
    • Nonconventional MR Imaging Assessment of the Motor System
    • Nonconventional MR Imaging Assessment of the Extramotor Regions
    • The Near Future of Neuroimaging of ALS
    • Conclusions
    • Acknowledgments
    • References
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Ultra-high field (7T) functional magnetic resonance imaging in amyotrophic lateral sclerosis: a pilot study
  • Modelling seeding and neuroanatomic spread of pathology in amyotrophic lateral sclerosis
  • Teaching NeuroImages: Mills syndrome: Metabolic and structural neuroimaging aids to the diagnostic
  • A large-scale multicentre cerebral diffusion tensor imaging study in amyotrophic lateral sclerosis
  • Genetics of Amyotrophic Lateral Sclerosis
  • Concomitant amyotrophic lateral sclerosis and paraclinical laboratory features of multiple sclerosis: coincidence or causal relationship?
  • Corticospinal Tract MR Signal-Intensity Pseudonormalization on Magnetization Transfer Contrast Imaging: A Potential Pitfall in the Interpretation of the Advanced Compromise of Upper Motor Neurons in Amyotrophic Lateral Sclerosis
  • Cognitive Functions and White Matter Tract Damage in Amyotrophic Lateral Sclerosis: A Diffusion Tensor Tractography Study
  • The Topography of Brain Microstructural Damage in Amyotrophic Lateral Sclerosis Assessed Using Diffusion Tensor MR Imaging
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • An Atlas of Neonatal Neurovascular Imaging Anatomy as Depicted with Microvascular Imaging: The Intracranial Arteries
  • An Atlas of Neonatal Neurovascular Imaging Anatomy as Depicted with Microvascular Imaging: The Intracranial Veins
  • Clinical Translation of Hyperpolarized 13C Metabolic Probes for Glioma Imaging
Show more Review Articles

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire