Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • AJNR Case Collection
    • Case of the Week Archive
    • Classic Case Archive
    • Case of the Month Archive
  • Special Collections
    • Spinal CSF Leak Articles (Jan 2020-June 2024)
    • 2024 AJNR Journal Awards
    • Most Impactful AJNR Articles
  • Multimedia
    • AJNR Podcast
    • AJNR Scantastics
    • Video Articles
  • For Authors
    • Submit a Manuscript
    • Author Policies
    • Fast publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Manuscript Submission Guidelines
    • Imaging Protocol Submission
    • Submit a Case for the Case Collection
  • About Us
    • About AJNR
    • Editorial Board
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Other Publications
    • ajnr

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • AJNR Case Collection
    • Case of the Week Archive
    • Classic Case Archive
    • Case of the Month Archive
  • Special Collections
    • Spinal CSF Leak Articles (Jan 2020-June 2024)
    • 2024 AJNR Journal Awards
    • Most Impactful AJNR Articles
  • Multimedia
    • AJNR Podcast
    • AJNR Scantastics
    • Video Articles
  • For Authors
    • Submit a Manuscript
    • Author Policies
    • Fast publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Manuscript Submission Guidelines
    • Imaging Protocol Submission
    • Submit a Case for the Case Collection
  • About Us
    • About AJNR
    • Editorial Board
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

Welcome to the new AJNR, Updated Hall of Fame, and more. Read the full announcements.


AJNR is seeking candidates for the position of Associate Section Editor, AJNR Case Collection. Read the full announcement.

 

Research ArticlePediatrics
Open Access

Diffusion Tensor MR Imaging in Children with Pantothenate Kinase−Associated Neurodegeneration with Brain Iron Accumulation and Their Siblings

R. Awasthi, R.K. Gupta, R. Trivedi, J.K. Singh, V.K. Paliwal and R.K.S. Rathore
American Journal of Neuroradiology March 2010, 31 (3) 442-447; DOI: https://doi.org/10.3174/ajnr.A1849
R. Awasthi
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R.K. Gupta
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R. Trivedi
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J.K. Singh
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
V.K. Paliwal
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R.K.S. Rathore
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

Abstract

BACKGROUND AND PURPOSE: It has been reported that iron concentration influences DTI metrics in deep gray matter nuclei. We hypothesized that increased FA in the deep gray nuclei may indicate abnormal iron accumulation in patients with PKAN and their siblings.

MATERIALS AND METHODS: Seven patients with the characteristic “eye-of-the-tiger sign,” their 5 siblings, and 5 age-matched controls were prospectively studied. One-way ANOVA with Bonferroni post hoc multiple comparisons was used to compare DTI metrics (FA and MD) among subject groups in the putamen, CN, GP, SN, and ALIC. In addition, hypointense and hyperintense regions of the eye-of-the-tiger sign were segmented, and their DTI metrics were compared. In the patient group, the values of DTI metrics in hypointense regions were also compared with those of the ALIC.

RESULTS: A significant increase in FA values of the GP and SN from controls to the patient group to siblings was observed. In the GP, MD values were significantly higher in patients compared with controls and siblings. The patients showed significantly increased FA with decreased MD in hypointense compared with hyperintense regions of the eye-of-the-tiger sign. No difference in FA values were observed between the ALIC and hypointense regions of the eye-of-the-tiger sign in patients.

CONCLUSIONS: High FA values in siblings of patients with PKAN suggest the presence of abnormal iron in deep gray matter nuclei, even in the absence of its demonstration on T2*-weighted GRE.

Abbreviations

ALIC
anterior limb of the internal capsule
ANN
artificial neural networks
ANOVA
analysis of variance
CN
caudate nucleus
Diff.
difference
DTI
diffusion tensor imaging
FA
fractional anisotropy
FDRI
field-dependent relaxation increase
FSE
fast spin-echo
GP
globus pallidus
GRE
gradient recalled-echo
HBT
hemorrhagic brain tumor
LVQ
learning vector quantization
MD
mean diffusivity
NBIA
neurodegeneration with brain iron accumulation
PANK2
pantothenate kinase 2
PKAN
pantothenate kinase−associated neurodegeneration
SN
substantia nigra
SNR
signal-to-noise ratio

PKAN with brain iron accumulation is a rare autosomal recessive neurodegenerative disorder that involves the pallidum and SN. It is typically an obstinately progressive disease of childhood and adolescence, in which motor symptoms predominate with rigidity, dystonia, and intellectual impairment with or without pyramidal tract signs.1,2

PKAN is placed in a group of neurodegenerative disorders known as NBIA.3–5 NBIA covers a spectrum of disorders including PKAN, aceruloplasminemia, neuroferritinopathy, hypoprebetalipoproteinemia acanthocytosis retinopathy, and pallidal degeneration. On the basis of the age of onset and disease progression, Hayflick et al6 classified PKAN in 2 clinical forms, early-onset (first decade of life) rapidly progressive disease (classic form) and late-onset (second or third decade of life) slowly progressive disease (atypical form). The PANK2 gene has been found to be mutated in all patients with the classic form and in one-third of patients with the atypical form.6

Pathologically, there is neuronal loss and gliosis affecting mainly the internal segment of the GP and SN. PKAN is associated with widely disseminated rounded or oval non-nuclear spheroids along with intracellular and extracellular iron deposition in the GP and SN.7,8

Conventional MR imaging shows bilateral high signal intensity surrounded by a region of low signal intensity on T2-weighted and T2*-weighted MR imaging in the medial GP. This signal intensity distribution is characteristically described as the “eye-of-the-tiger sign.”6,9 Hayflick et al6 have reported that all patients with the eye-of-the-tiger sign, whether classic or atypical, show PANK2 mutations.

DTI is a noninvasive MR imaging technique, which provides information about the microstructural organization of the brain by measuring the diffusion of water molecules in vivo.10 The 2 commonly used DTI metrics are FA and MD. These metrics have been widely used to study the microstructural white matter abnormalities in a number of neurologic disorders. Apart from normal white matter, high FA values have also been reported in the developing cerebral cortex,11,12 brain abscess cavities,13 and leptomeningeal-cortical regions of patients with meningitis.14

High FA has been reported in patients with gliomas with chronic hemorrhage, and a metalloanisotropic effect of intracellular iron has been suggested as the reason for this increase.15 Recently, high FA has also been reported in the deep gray matter nuclei with advancing age, and the physiologic increase in iron deposition has been implicated as the cause.16,17

In view of observed increased iron accumulation associated with high FA,15–17 we hypothesized that the increase in iron concentration in the basal ganglia of these children should result in increased anisotropy, because the disorder is known to have abnormal iron metabolism. The study aimed to compare DTI metrics in deep gray matter of patients with PKAN and their siblings with age-matched healthy controls and to see whether these changes indicate abnormal iron metabolism, especially in siblings of patients with PKAN.

Materials and Methods

Subjects

Seven patients with PKAN (mean age, 8.0 ± 3.2 years; 6 boys), 5 of their siblings (mean age, 6.0 ± 4.4 years; 2 boys), and 5 age-matched healthy controls (mean age, 8 ± 3.2 years; 3 boys) were prospectively studied, and medical records of the patients were checked for clinical evaluation. Institutional ethics and research committees approved the study. Parental informed consent was obtained for all subjects.

MR Imaging

Conventional MR imaging and DTI were performed on a 1.5T MR imaging scanner (LX EchoSpeed Plus; GE Healthcare, Milwaukee, Wisconsin) by using a quadrature birdcage head coil. MR imaging protocol included T2-weighted FSE images with TR/TE/NEX = 4900 ms/85 ms/2; T1-weighted spin-echo images with TR/TE/NEX = 625 ms/14 ms/2; and T2*-weighted GRE images with TR/TE/NEX/flip angle = 500 ms/15 ms/1/20°. A total of 36 axial sections were acquired with a section thickness of 3 mm, no intersection gap, and an FOV of 240 × 240 mm.

DTI data were acquired with a single-shot echo-planar dual spin-echo sequence with ramp sampling.18 The dual spin-echo sequence reduces image distortions in the diffusion-weighted images by compensating for the effect of eddy currents.19 A dodecahedral diffusion-encoding scheme with 10 uniformly distributed directions over the unit sphere was used for obtaining 10 diffusion-weighted images and 2 non-diffusion-weighted images. The imaging parameters were the following: TR/TE/NEX, 8 sec/100 ms/8, and a b factor of 1000 s/mm2. A total of 36 axial sections were acquired with a section thickness of 3 mm, no intersection gap, and an FOV of 240 × 240 mm. The acquisition matrix was 128× 80, and a homodyne algorithm was used to construct the k-space data to 128 × 128. This was zero-filled to reconstruct an image matrix of 256 × 256. To enhance the SNR, we temporally averaged magnitude-constructed images. The SNR0 in the reference (b ∼ 0) image was approximately 100, which helped to reduce the bias in the estimated DTI metrics.

DTI Data Processing and Analysis

The DTI data were processed by using JAVA-based software as described in detail elsewhere.20 Data quantification was performed by 2 independent observers blinded to each other and subject groups. Regions of interest were manually placed on a color-coded FA map overlaid on MD/T2 maps to calculate the DTI-derived metrics (FA, and MD) in the CN, putamen, GP, and SN in the 3 subject groups (Fig 1A, -B). To ensure the consistent pattern of FA values in gray matter nuclei in these patients, we also placed regions of interest on the ALIC and compared them with those in controls (Fig 1A). The size of regions of interest varied from 2 × 2 to 4 × 4 pixels. In each subject, regions of interest were placed on 5 sections for the CN, putamen, and GP and on 3 sections for the SN and ALIC, where the respective structure was best visualized.

Fig 1.
  • Download figure
  • Open in new tab
  • Download powerpoint
Fig 1.

A, Color-coded FA map overlaid on an MD map at the level of the basal ganglia shows placement of regions of interest at the CN (square), putamen (solid rectangle), GP (hollow rectangle), and ALIC (ellipse). B, Color-coded FA map overlaid on the MD map at the level of the SN shows region-of-interest placement on the SN. Note that the cutoff value for the color-coded FA map overlaid on the MD map for display is kept at 0. 20.

In addition to region-of-interest analysis, hypointense and hyperintense components of the eye-of-the-tiger sign visible on T2*-weighted GRE images in patients were automatically segmented to compare the value of FA in the hypointense and hyperintense regions, because hypointensity on T2-weighted and T2*-weighted images is known to correspond to abnormal iron accumulation. Segmentation was done by using in-house-developed JAVA-based software (Fig 2J). The segmentation methodology used a 2-layer LVQ-ANN classification network (Kohonen20), implemented in-house in a JAVA interface (Fig 2J). The steps of the LVQ clustering algorithm are as follows:

  • Step 1) Given unlabeled dataset X = {x1, x2,…, xn} ⊂ RP Fix c, T, and ε > 0]

  • Step 2) Initialize V = (v0,1,…….,vc,0) ∈ Rcp and learning rate α0 ∈ (1,0).

  • Step 3) For t = 1,2, ……,T

    For k = 1,2, ……,n

    A) Find ‖xk − vi,t−1‖ = min {‖xk − vj,t−1‖}. B) Update the winner; vi,t = vi,t−1 +αt (xk − vi,t−1).

  • Step 4) If ‖Vt −Vt−1‖ ≤ ε step, or else adjust the learning rate αt for the next t. (In our case, αt = [1 − t / T]), and T = 2000.)

Fig 2.
  • Download figure
  • Open in new tab
  • Download powerpoint
Fig 2.

A–C, MR imaging of a 6-year-old male healthy control shows normal distribution of white and gray matter on the T2-weighted image (A), the T2*-weighted GRE image (B), and the color-coded FA map overlaid on the MD map (C). D–F, A 6-year-old male sibling of the patient with PKAN G–J. Findings of T2-weighted (D) and T2*-weighted GRE (E) images appear normal in the sibling; however, the quantified color-coded FA map overlaid on the MD map (F) shows intermediate FA values between patients and controls. G–I, In a 10-year-old male patient with PKAN, T2-weighted (G) and T2*-weighted GRE (H) images show the eye-of-the-tiger sign. The color-coded FA map overlaid on the MD map (I) shows high FA values (arrow) in the GP (0.20) compared with those in both the control (0.10) and his sibling (0.12). J, Segmented FA map of the patient overlaid on T2. The hypointense regions are shown in yellow.

For segmentation of the eye-of-the-tiger sign, a small rectangular region of interest covering both the left and right eye-of-the-tiger signs was drawn on the B0 image, and the LVQ algorithm was applied in the region of interest with only 6 initial reference vectors (prototype). Final image pixels that were closest to the first weight vector having the lowest intensity were classified as object pixels. DTI metrics were calculated for the object pixels.

Statistical Analysis

A Student paired t test was performed to evaluate the difference between the region-of-interest measurements in the right and left hemispheres in the healthy controls. Bivariate analysis of correlation was performed to rate inter-rater reliability between the 2 observers, with the assumption that there was no correlation between FA and MD values quantified by the 2 observers (null hypothesis = 0). Alternatively, if a correlation >0.00 was observed at α = 0.05% and 90% power of the test, the null hypothesis was rejected.

One-way ANOVA by using Bonferroni post hoc multiple comparisons was performed to compare the DTI metrics among the subject groups in the CN, putamen, GP, SN, and ALIC. The Student independent t test was performed to see the difference in DTI metrics between hypointense and hyperintense regions of the eye-of-the-tiger sign visible on T2- and T2*-weighted GRE images in the patient group. The Student independent t test was also performed to compare DTI metrics between the ALIC of the patient and the hypointense regions of the eye-of-the-tiger sign. A P value < .05 was considered statistically significant. All statistical computations were performed by using SPSS statistical software (Version 14.0; SPSS, Chicago, Illinois).

Results

Clinical Presentation

All 7 patients presented with extrapyramidal features, including dystonia, dysarthria, and rigidity; however, the degree of severity was dependent on the difference between the age of onset of symptoms and the clinical evaluation at the time of imaging. Four patients had a time gap of 14–18 months between the onset of disease and diagnosis on MR imaging, whereas in 3 patients, this time gap was 4–6 months. Two patients developed orofacial dystonia, resulting in difficulty in swallowing. None of the siblings of the patients was symptomatic, and they were imaged along with the patient. According to the parents, each of the siblings (both male) of 2 patients from different families died at 9 years and 12 years of age, respectively. Both had symptoms similar to those of patients with PKAN. The controls were examined and were found to have no clinical or neurologic abnormalities.

Qualitative Analysis

All patients diagnosed with PKAN showed the characteristic eye-of-the-tiger sign on T2-weighted images (ie, T2 signal-intensity hypointensity in the GP with a central region of T2 hyperintensity) (Fig 2). Besides the eye-of-the-tiger sign, no abnormality was evident in the brain parenchyma of patients. None of the siblings showed abnormal signal intensities including the eye-of-the-tiger sign on conventional MR imaging. Findings of all controls appeared normal on MR imaging.

Quantitative Analysis

The inter-rater reliability for the DTI-based approach was 0.93 (P < .001). In healthy controls, no significant difference in FA and MD values in the right hemisphere was observed compared with the left hemisphere, so the values of the right and left hemispheres in all 3 groups were pooled together, and average values were taken for statistical analysis. Mean values of FA and MD in the CN, GP, putamen, SN, and ALIC among the 3 groups are summarized in Table 1.

View this table:
  • View inline
  • View popup
Table 1:

Summary of FA and MD (×10−3 mm2s−1) values quantified in patients with PKAN, their siblings, and age-matched healthy controls in deep gray matter nuclei and ALIC

Bonferroni post hoc multiple comparisons showed a significant difference in FA values among all subject groups in the GP and SN (Table 2 and Figs 2 and 3). In these regions, significantly higher FA values in the patient group were observed compared with both siblings and controls. Significantly increased FA values were observed in siblings compared with controls in the GP and SN. No significant change in FA values was observed among groups in the putamen, CN, and ALIC. Among different regions, a significantly higher MD value in patients was observed only in the GP compared with both controls and siblings. In the rest of the regions, no significant change in MD values was observed among the 3 groups.

View this table:
  • View inline
  • View popup
Table 2:

Multiple comparisons, using the Bonferroni test for FA and MD valuesa of deep gray matter nuclei, among the subject groups

Fig 3.
  • Download figure
  • Open in new tab
  • Download powerpoint
Fig 3.

A–C, Imaging of a 6-year-old male healthy control shows normal distribution of white and gray matter on the T2-weighted image (A), the T2*-weighted GRE image (B), and the color-coded FA map (C) at the level of the SN. D–F, In a 6-year-old male sibling of the patient with PKAN shown in Fig G–I, findings on T2-weighted (D) and T2*-weighted GRE (E) images appear normal; however, the color-coded FA map overlaid on the MD map (F) shows higher FA values (0.22, arrow) than those in the control (0.18). G–I, In imaging of a 10-year-old male patient with PKAN, findings on T2-weighted (G) and T2*-weighted GRE (H) images are normal-appearing. The color-coded FA map overlaid on the MD map (I) from the patient shows high FA values (0.30) in the SN (arrow) compared with those in both the control and his sibling.

On the independent Student t test, significantly increased FA (P < .001) with decreased MD values (P < .001) in hypointense (FA = 0.33 ± 0.09, MD = 0.72 ± 0.05) regions was observed compared with hyperintense regions (FA = 0.18 ± 0.05, MD = 0.88 ± 0.06) of the eye-of-the-tiger sign in the patient group. In addition, hypointense regions of the eye-of-the-tiger sign did not show any significant difference in FA (P = .09) or MD (P = .14) from the ALIC (FA = 0.36 ± 0.01, MD = 0.71 ± 0.03) in these patients.

Discussion

The present study demonstrates an increase in FA values in the GP and SN from controls to patients to siblings, and the difference was found to be statistically significant. The MD values in the GP were significantly higher in patients compared with both controls and siblings. In addition, patients showed significantly increased FA along with decreased MD in hypointense regions compared with the hyperintense region of the eye-of-the-tiger sign. The FA values in hypointense regions were comparable with those in the ALIC.

Pathologic finding in PKAN include both extracellular and intracellular iron deposition, axonal swelling, and spheroids predominately in the GP and pars reticularis of the SN.7,8 Abnormal iron accumulation in deep gray matter nuclei has been reported in various neurodegenerative disorders, but the exact mechanism in PKAN and related neurodegenerative disorders is not clear.6 Both PKAN and neuroferritinopathy may show the eye-of-the-tiger sign on conventional MR imaging.21 In PKAN, deficiency of the pantothenate kinase enzyme occurs due to mutation in any of the 4 human pantothenate kinase genes. Its deficiency causes chelation of iron.22,23 Neuroferritinopathy is associated with mutation in the light chain of the ferritin gene. The mutation causes abnormal iron accumulation in basal ganglia.24

It has been reported that iron deposition influences DTI metrics16,17 by introducing local field gradients that have been shown to increase anisotropy.25 Pfefferbaum et al16 reported increased anisotropy in deep gray matter nuclei with age and correlated it with FDRI estimates. A near-perfect correlation between FDRI estimates and brain iron concentration measured postmortem has also been reported.16,26 It suggests that iron accumulation influences FA values in controls and patients with abnormal iron metabolism. In another DTI study on brain hemorrhage and HBT, increased FA has been reported even in glioma with a chronic stage of bleed. The authors explained it by demonstrating intracellular iron in the tumor cells on histology.15 Abnormal intracellular iron in deep gray matter regions predominantly in GP and SN, as described previously on pathology, may explain the reason for high FA in these regions in patients with PKAN and their siblings in the current study. The absence of significant changes in DTI metrics of the CN and putamen in patients and their siblings suggests the absence of abnormal iron accumulation in these regions.

T2*-weighted GRE imaging has been found to be valuable in detecting the presence of iron in different brain lesions27; however, the T2* effect is field- and pulse-sequence-dependent. An imaging study has shown that T2*-weighted GRE imaging at 3T is more sensitive than at 1.5T in the detection of hemorrhagic foci related to diffused axonal injury.28 These observations suggest that T2*-weighted GRE may have sensitivity constraints on a 1.5T unit. In the present study, though the FA values of the hyperintense region of the eye-of-the-tiger sign were lower than those of the hypointense region, these were still higher compared with FA values of the GP in the control group, suggesting that some nonheme iron is present in the gliotic region of these patients. In addition, significantly increased anisotropy in the GP and SN in siblings compared with controls suggests that there is probably an abnormal iron deposition in the siblings of these patients, which may be beyond the sensitivity of T2*-weighted GRE on the 1.5T MR imaging system.

MD is the average measure of the molecular diffusion, and it is affected by the cellular size and integrity.29 The increased MD value in normal-appearing white matter in various diffuse brain pathologies probably reflects gliosis30 and neuronal loss.18 The observed high MD values in the medial GP in patients compared with siblings and the control group may be explained pathologically by neuronal loss, gliosis, and spongiosis.6,7

Although manually placed region-of-interest analysis has been widely used in the DTI literature, it is not always reliable due to some intraobserver and interobserver variability. However in the current study, significantly strong positive correlation was observed between 2 independent observers who quantified FA and MD values, suggesting the reliability of the data used in this study.

The presence of the eye-of-the-tiger sign strongly suggests that all patients had a strong probability of a mutated PANK2 gene, though the eye-of-the-tiger sign has also been reported in other neurodegenerative disorders.21 Lack of a genetic testing facility for PKAN in our neighborhood limited us to making the differential diagnosis in these patients and to studying the possible presence of an associated mutation in their siblings. This may be considered the major limitation of this study. Due to the rarity of the disease, the number of patients studied was small and may be considered as another limitation of the study.

Conclusions

We conclude that FA appears to be an indicator of abnormal iron metabolism and its accumulation in deep gray matter, even in the absence of its demonstrable T2* effect on GRE. This may be of value in early diagnosis and management of pathologies associated with abnormal iron accumulation.

Footnotes

  • This study was supported by the Department of Biotechnology (grant BT/PR5009/MED/14/581/2004), New Delhi, India. Rishi Awasthi received financial assistance from the Indian Council of Medical Research, New Delhi, India

Indicates open access to non-subscribers at www.ajnr.org

References

  1. 1.↵
    1. Dooling EC,
    2. Schoene WC,
    3. Richardson EP,
    4. et al
    . Hallervorden-Spatz syndrome. Arch Neurol 1974;30:70–83
    CrossRefPubMed
  2. 2.↵
    1. Halliday W
    . The nosology of Hallervorden-Spatz disease. J Neurol Sci 1995;134(suppl):84–91
    CrossRefPubMed
  3. 3.↵
    1. Arawaka S,
    2. Saito Y,
    3. Murayama S,
    4. et al
    . Lewy body in neurodegeneration with brain iron accumulation type 1 is immunoreactive for alpha synuclein. Neurology 1998;51:887–89
    Abstract/FREE Full Text
  4. 4.↵
    1. Galvin JE,
    2. Giasson B,
    3. Hurtig HI,
    4. et al
    . Neurodegeneration with brain iron accumulation type 1 is characterized by alpha-, beta-, and gamma-synuclein neuropathology. Am J Pathol 2000;157:361–68
    PubMed
  5. 5.↵
    1. Zhou B,
    2. Westaway SK,
    3. Levinson B,
    4. et al
    . A novel pantothenate kinase gene (PANK2) is defective in Hallervorden-Spatz syndrome. Nat Genet 2001;28:345–49
    CrossRefPubMed
  6. 6.↵
    1. Hayflick SJ,
    2. Westaway SK,
    3. Levinson B,
    4. et al
    . Genetic, clinical, and radiographic delineation of Hallervorden-Spatz syndrome. N Engl J Med 2003;348:33–40
    CrossRefPubMed
  7. 7.↵
    1. Grimes DA,
    2. Lang AE,
    3. Bergeron C
    . Late adult onset chorea with typical pathology of Hallervorden-Spatz syndrome. J Neurol Neurosurg Psychiatry 2000;69:392–95
    Abstract/FREE Full Text
  8. 8.↵
    1. Sharma MC,
    2. Aggarwal N,
    3. Bihari M,
    4. et al
    . Hallervorden Spatz disease: MR and pathological findings of a rare case. Neurology India 2005;53:102–04
    CrossRefPubMed
  9. 9.↵
    1. Angelini L,
    2. Nardocci N,
    3. Rumi V,
    4. et al
    . Hallervorden-Spatz disease: clinical and MRI study of 11 cases diagnosed in life. J Neurol 1992;239:417–25
    CrossRefPubMed
  10. 10.↵
    1. Le Bihan D,
    2. Mangain JF,
    3. Poupon C,
    4. et al
    . Diffusion tensor imaging: concepts and applications. J Magn Reson Imaging 2001;13:534–46
    CrossRefPubMed
  11. 11.↵
    1. Gupta RK,
    2. Hasan KM,
    3. Trivedi R,
    4. et al
    . Diffusion tensor imaging of the developing human cerebrum. J Neurosci Res 2005;81:172–78
    CrossRefPubMed
  12. 12.↵
    1. Miller JH,
    2. McKinstry RC,
    3. Philip JV,
    4. et al
    . Diffusion-tensor MR imaging of normal brain maturation: a guide to structural development and myelination. AJR Am J Roentgenol 2003;180:851–59
    PubMed
  13. 13.↵
    1. Gupta RK,
    2. Hasan KM,
    3. Mishra AM,
    4. et al
    . High fractional anisotropy in brain abscesses versus other cystic intracranial lesions. AJNR Am J Neuroradiol 2005;26:1107–14
    Abstract/FREE Full Text
  14. 14.↵
    1. Yadav A,
    2. Malik GK,
    3. Trivedi R,
    4. et al
    . Correlation of CSF neuroinflammatory molecules with leptomeningeal cortical subcortical white matter fractional anisotropy in neonatal meningitis. Magn Reson Imaging 2009;27:214–21. Epub 2008 Aug 6
    CrossRefPubMed
  15. 15.↵
    1. Haris M,
    2. Gupta RK,
    3. Husain N,
    4. et al
    . Measurement of DTI metrics in hemorrhagic brain lesions: possible implication in MRI interpretation. J Magn Reson Imaging 2006;24:1259–68
    CrossRefPubMed
  16. 16.↵
    1. Pfefferbaum A,
    2. Adalsteinsson E,
    3. Rohlfing T,
    4. et al
    . Diffusion tensor imaging of deep gray matter brain structures: effects of age and iron concentration. Neurobiol Aging 2010;31:482–93. Epub 2008 May 29
    CrossRefPubMed
  17. 17.↵
    1. Pal D,
    2. Yadav A,
    3. Rathore RKS
    . Age and gender related changes in DTI metrics in deep grey matter of normal human brain. In: Proceedings of the 17th Annual Meeting of International Society for Magnetic Resonance in Medicine, Honolulu, Hawaii. April 18–24, 2009
  18. 18.↵
    1. Basser PJ
    . Inferring microstructural features and the physiological state of tissues from diffusion-weighted images. NMR Biomed 1995;8:333–44
    CrossRefPubMed
  19. 19.↵
    1. Conturo TE,
    2. Mckinstry RC,
    3. Aronovitz JA,
    4. et al
    . Diffusion MRI: precision, accuracy and flow effects. NMR Biomed 1995;8:307–32
    PubMed
  20. 20.↵
    1. Kohonen T
    . An introduction to neural computing. Neural Netw 1988;1:3–16
  21. 21.↵
    1. McNeil A,
    2. Birchall D,
    3. Hayflick SJ,
    4. et al
    . T2* and FSE MRI distinguishes four subtypes of neurodegeneration with brain iron accumulation. Neurology 2008;70:1614–19
    Abstract/FREE Full Text
  22. 22.↵
    1. Yang EY,
    2. Campbell A,
    3. Bondy SC,
    4. et al
    . Configuration of thiols dictates their ability to promote iron induced reactive oxygen species generation. Redox Rep 2000;5:371–75
    CrossRefPubMed
  23. 23.↵
    1. Yoon SJ,
    2. Koh YH,
    3. Floyd RA,
    4. et al
    . Copper, zinc superoxide dismutase enhances DNA damage and mutagenicity induced by cysteine/iron. Mutat Res 2000;448:97–104
    PubMed
  24. 24.↵
    1. Curtis AR,
    2. Fey C,
    3. Morris CM,
    4. et al
    . Mutation in the gene encoding ferritin light polypeptide causes dominant adult-onset basal ganglia disease. Nat Genet 2001;28:350–54
    CrossRefPubMed
  25. 25.↵
    1. Xia Z,
    2. Nguyen BD,
    3. La Mar GN
    . The use of chemical shift temperature gradients to establish the paramagnetic susceptibility tensor orientation: implication for structure determination/refinement in paramagnetic metalloproteins. J Biomol NMR 2000;17:167–74
    CrossRefPubMed
  26. 26.↵
    1. Hallgren B,
    2. Sourander P
    . The effect of age on non-haemin iron in the human brain. J Neurochem 1958;3:41–51
    CrossRefPubMed
  27. 27.↵
    1. Giugni E,
    2. Sabatini U,
    3. Hagberg E,
    4. et al
    . Turbo-proton echo-planar spectroscopic imaging (t-PEPSI) MR technique in detection of diffuse axonal damage in brain injury: comparison with gradient-recalled echo (GRE) sequence. Radiol Med 2005;109:563–72
    PubMed
  28. 28.↵
    1. Scheid R,
    2. Preul C,
    3. Gruber O,
    4. et al
    . Diffuse axonal injury associated with chronic traumatic brain injury: evidence from T2*-weighted gradient-echo imaging at 3T. AJNR Am J Neuroradiol 2003;24:1049–56
    Abstract/FREE Full Text
  29. 29.↵
    1. Basser PJ,
    2. Mattiello J,
    3. LeBihan D
    . MR diffusion tensor spectroscopy and imaging. Biophys J 1994;66:259–67
    CrossRefPubMed
  30. 30.↵
    1. Rugg-Gunn FJ,
    2. Eriksson SH,
    3. Symms MR,
    4. et al
    . Diffusion tensor imaging in refractory epilepsy. Lancet 2002;359:1748–51
    CrossRefPubMed
  • Received June 18, 2009.
  • Accepted after revision July 24, 2009.
  • Copyright © American Society of Neuroradiology
View Abstract
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 31 (3)
American Journal of Neuroradiology
Vol. 31, Issue 3
1 Mar 2010
  • Table of Contents
  • Index by author
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Diffusion Tensor MR Imaging in Children with Pantothenate Kinase−Associated Neurodegeneration with Brain Iron Accumulation and Their Siblings
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
R. Awasthi, R.K. Gupta, R. Trivedi, J.K. Singh, V.K. Paliwal, R.K.S. Rathore
Diffusion Tensor MR Imaging in Children with Pantothenate Kinase−Associated Neurodegeneration with Brain Iron Accumulation and Their Siblings
American Journal of Neuroradiology Mar 2010, 31 (3) 442-447; DOI: 10.3174/ajnr.A1849

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Diffusion Tensor MR Imaging in Children with Pantothenate Kinase−Associated Neurodegeneration with Brain Iron Accumulation and Their Siblings
R. Awasthi, R.K. Gupta, R. Trivedi, J.K. Singh, V.K. Paliwal, R.K.S. Rathore
American Journal of Neuroradiology Mar 2010, 31 (3) 442-447; DOI: 10.3174/ajnr.A1849
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • Abbreviations
    • Materials and Methods
    • Results
    • Discussion
    • Conclusions
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Crossref (25)
  • Google Scholar

This article has been cited by the following articles in journals that are participating in Crossref Cited-by Linking.

  • Syndromes of neurodegeneration with brain iron accumulation (NBIA): An update on clinical presentations, histological and genetic underpinnings, and treatment considerations
    Susanne A. Schneider, John Hardy, Kailash P. Bhatia
    Movement Disorders 2012 27 1
  • A test-retest study on Parkinson&#039;s PPMI dataset yields statistically significant white matter fascicles
    Martin Cousineau, Pierre-Marc Jodoin, Eleftherios Garyfallidis, Marc-Alexandre Côté, Félix C. Morency, Verena Rozanski, Marilyn Grand’Maison, Barry J. Bedell, Maxime Descoteaux
    NeuroImage: Clinical 2017 16
  • Basal ganglia lesions in children and adults
    Monika Bekiesinska-Figatowska, Hanna Mierzewska, Elżbieta Jurkiewicz
    European Journal of Radiology 2013 82 5
  • Microstructural and volumetric abnormalities of the putamen in juvenile myoclonic epilepsy
    Simon S. Keller, Tobias Ahrens, Siawoosh Mohammadi, Gabriel Möddel, Harald Kugel, E. Bernd Ringelstein, Michael Deppe
    Epilepsia 2011 52 9
  • Excess iron harms the brain: the syndromes of neurodegeneration with brain iron accumulation (NBIA)
    Susanne A. Schneider, Kailash P. Bhatia
    Journal of Neural Transmission 2013 120 4
  • Missense PANK2 mutation without “Eye of the tiger” sign: MR findings in a large group of patients with pantothenate kinase‐associated neurodegeneration (PKAN)
    Rafael Fermin Delgado, Pedro Roa Sanchez, Herwin Speckter, Eddy Perez Then, Ramney Jimenez, Jairo Oviedo, Paulo R. Dellani, Bernd Foerster, Peter Stoeter
    Journal of Magnetic Resonance Imaging 2012 35 4
  • Syndromes of Neurodegeneration With Brain Iron Accumulation
    Susanne A. Schneider, Kailash P. Bhatia
    Seminars in Pediatric Neurology 2012 19 2
  • Left hemisphere fractional anisotropy increase in noise-induced tinnitus: A diffusion tensor imaging (DTI) study of white matter tracts in the brain
    Randall R. Benson, Ramtilak Gattu, Anthony T. Cacace
    Hearing Research 2014 309
  • Brain MRI Pattern Recognition in Neurodegeneration With Brain Iron Accumulation
    Jae-Hyeok Lee, Ji Young Yun, Allison Gregory, Penelope Hogarth, Susan J. Hayflick
    Frontiers in Neurology 2020 11
  • Microbleeds and free active MMP‐9 are independent risk factors for neurological deterioration in acute lacunar stroke
    S.‐H. Koh, C. Y. Park, M. K. Kim, K.‐Y. Lee, J. Kim, D.‐I. Chang, H.‐T. Kim, S. H. Kim
    European Journal of Neurology 2011 18 1

More in this TOC Section

  • SyMRI & MR Fingerprinting in Brainstem Myelination
  • Comparison of Image Quality and Radiation Dose in Pediatric Temporal Bone CT Using Photon-Counting Detector CT and Energy-Integrating Detector CT
  • Pons&Vermis Localization on Fetal MRI Using U-Net
Show more Pediatrics

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editors Choice
  • Fellow Journal Club
  • Letters to the Editor

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

Special Collections

  • Special Collections

Resources

  • News and Updates
  • Turn around Times
  • Submit a Manuscript
  • Author Policies
  • Manuscript Submission Guidelines
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Submit a Case
  • Become a Reviewer/Academy of Reviewers
  • Get Peer Review Credit from Publons

Multimedia

  • AJNR Podcast
  • AJNR SCANtastic
  • Video Articles

About Us

  • About AJNR
  • Editorial Board
  • Not an AJNR Subscriber? Join Now
  • Alerts
  • Feedback
  • Advertise with us
  • Librarian Resources
  • Permissions
  • Terms and Conditions

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire