Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Research ArticleNeurointervention
Open Access

Patient-Specific Computational Hemodynamics of Intracranial Aneurysms from 3D Rotational Angiography and CT Angiography: An In Vivo Reproducibility Study

A.J. Geers, I. Larrabide, A.G. Radaelli, H. Bogunovic, M. Kim, H.A.F. Gratama van Andel, C.B. Majoie, E. VanBavel and A.F. Frangi
American Journal of Neuroradiology March 2011, 32 (3) 581-586; DOI: https://doi.org/10.3174/ajnr.A2306
A.J. Geers
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
I. Larrabide
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A.G. Radaelli
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
H. Bogunovic
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M. Kim
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
H.A.F. Gratama van Andel
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C.B. Majoie
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
E. VanBavel
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A.F. Frangi
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Frosen J,
    2. Piippo A,
    3. Paetau A,
    4. et al
    . Remodeling of saccular cerebral artery aneurysm wall is associated with rupture: histological analysis of 24 unruptured and 42 ruptured cases. Stroke 2004;35:2287–93
    Abstract/FREE Full Text
  2. 2.↵
    1. Gonzalez CF,
    2. Cho YI,
    3. Ortega HV,
    4. et al
    . Intracranial aneurysms: flow analysis of their origin and progression. AJNR Am J Neuroradiol 1992;13:181–88
    Abstract/FREE Full Text
  3. 3.↵
    1. Hashimoto T,
    2. Meng H,
    3. Young WL
    . Intracranial aneurysms: links among inflammation, hemodynamics and vascular remodeling. Neurol Res 2006;28:372–80
    CrossRefPubMed
  4. 4.↵
    1. Kayembe KN,
    2. Sasahara M,
    3. Hazama F
    . Cerebral aneurysms and variations in the circle of Willis. Stroke 1984;15:846–50
    Abstract/FREE Full Text
  5. 5.↵
    1. Castro MA,
    2. Putman CM,
    3. Sheridan MJ,
    4. et al
    . Hemodynamic patterns of anterior communicating artery aneurysms: a possible association with rupture. AJNR Am J Neuroradiol 2009;30:297–302
    Abstract/FREE Full Text
  6. 6.↵
    1. Cebral JR,
    2. Castro MA,
    3. Burgess JE,
    4. et al
    . Characterization of cerebral aneurysms for assessing risk of rupture by using patient-specific computational hemodynamics models. AJNR Am J Neuroradiol 2005;26:2550–59
    Abstract/FREE Full Text
  7. 7.↵
    1. Cebral JR,
    2. Hendrickson S,
    3. Putman CM
    . Hemodynamics in a lethal basilar artery aneurysm just before its rupture. AJNR Am J Neuroradiol 2009;30:95–98
    Abstract/FREE Full Text
  8. 8.↵
    1. Jou LD,
    2. Lee DH,
    3. Morsi H,
    4. et al
    . Wall shear stress on ruptured and unruptured intracranial aneurysms at the internal carotid artery. AJNR Am J Neuroradiol 2008;29:1761–67
    Abstract/FREE Full Text
  9. 9.↵
    1. Castro M,
    2. Putman C,
    3. Radaelli A,
    4. et al
    . Hemodynamics and rupture of terminal cerebral aneurysms. Acad Radiol 2009;16:1201–07
    CrossRefPubMed
  10. 10.↵
    1. Cebral JR,
    2. Lohner R
    . Efficient simulation of blood flow past complex endovascular devices using an adaptive embedding technique. IEEE Trans Med Imaging 2005;24:468–76
    CrossRefPubMedWeb of Science
  11. 11.↵
    1. Cha KS,
    2. Balaras E,
    3. Lieber BB,
    4. et al
    . Modeling the interaction of coils with the local blood flow after coil embolization of intracranial aneurysms. J Biomech Eng 2007;129:873–79
    CrossRefPubMedWeb of Science
  12. 12.↵
    1. Kakalis NM,
    2. Mitsos AP,
    3. Byrne JV,
    4. et al
    . The haemodynamics of endovascular aneurysm treatment: a computational modelling approach for estimating the influence of multiple coil deployment. IEEE Trans Med Imaging 2008;27:814–24
    CrossRefPubMedWeb of Science
  13. 13.↵
    1. Kim M,
    2. Levy EI,
    3. Meng H,
    4. et al
    . Quantification of hemodynamic changes induced by virtual placement of multiple stents across a wide-necked basilar trunk aneurysm. Neurosurgery 2007;61:1305–12
    CrossRefPubMedWeb of Science
  14. 14.↵
    1. Larrabide I,
    2. Radaelli A,
    3. Frangi AF
    . Fast virtual stenting with deformable meshes: application to intracranial aneurysms. In: Proceedings of Medical Image Computing and Computer-Assisted Intervention, New York. September 6–10, 2008:790–97
  15. 15.↵
    1. Liou TM,
    2. Li YC
    . Effects of stent porosity on hemodynamics in a sidewall aneurysm model. J Biomech 2008;41:1174–83
    CrossRefPubMedWeb of Science
  16. 16.↵
    1. Radaelli AG,
    2. Augsburger L,
    3. Cebral JR,
    4. et al
    . Reproducibility of haemodynamical simulations in a subject-specific stented aneurysm model: a report on the Virtual Intracranial Stenting Challenge 2007. J Biomech 2008;41:2069–81. Epub 2008 Jun 25
    CrossRefPubMedWeb of Science
  17. 17.↵
    1. Anxionnat R,
    2. Bracard S,
    3. Ducrocq X,
    4. et al
    . Intracranial aneurysms: clinical value of 3D digital subtraction angiography in the therapeutic decision and endovascular treatment. Radiology 2001;218:799–808
    CrossRefPubMedWeb of Science
  18. 18.↵
    1. Sugahara T,
    2. Korogi Y,
    3. Nakashima K,
    4. et al
    . Comparison of 2D and 3D digital subtraction angiography in evaluation of intracranial aneurysms. AJNR Am J Neuroradiol 2002;23:1545–52
    Abstract/FREE Full Text
  19. 19.↵
    1. White PM,
    2. Wardlaw JM,
    3. Easton V
    . Can noninvasive imaging accurately depict intracranial aneurysms? A systematic review. Radiology 2000;217:361–70
    CrossRefPubMedWeb of Science
  20. 20.↵
    1. Hernandez M,
    2. Frangi AF
    . Non-parametric geodesic active regions: method and evaluation for cerebral aneurysms segmentation in 3DRA and CTA. Med Image Anal 2007;11:224–41. Epub 2007 Feb 25
    CrossRefPubMedWeb of Science
  21. 21.↵
    1. Piotin M,
    2. Gailloud P,
    3. Bidaut L,
    4. et al
    . CT angiography, MR angiography and rotational digital subtraction angiography for volumetric assessment of intracranial aneurysms: an experimental study. Neuroradiology 2003;45:404–09
    CrossRefPubMed
  22. 22.↵
    1. Tanoue S,
    2. Kiyosue H,
    3. Kenai H,
    4. et al
    . Three-dimensional reconstructed images after rotational angiography in the evaluation of intracranial aneurysms: surgical correlation. Neurosurgery 2000;47:866–71
    CrossRefPubMedWeb of Science
  23. 23.↵
    1. van Rooij WJ,
    2. Sprengers ME,
    3. de Gast AN,
    4. et al
    . 3D rotational angiography: the new gold standard in the detection of additional intracranial aneurysms. AJNR Am J Neuroradiol 2008;29:976–79
    Abstract/FREE Full Text
  24. 24.↵
    1. Cloft HJ,
    2. Joseph GJ,
    3. Dion JE
    . Risk of cerebral angiography in patients with subarachnoid hemorrhage, cerebral aneurysm, and arteriovenous malformation: a meta-analysis. Stroke 1999;30:317–20
    Abstract/FREE Full Text
  25. 25.↵
    1. Willinsky RA,
    2. Taylor SM,
    3. TerBrugge K,
    4. et al
    . Neurologic complications of cerebral angiography: prospective analysis of 2,899 procedures and review of the literature. Radiology 2003;227:522–28
    CrossRefPubMedWeb of Science
  26. 26.↵
    1. Brisman JL,
    2. Song JK,
    3. Newell DW
    . Cerebral aneurysms. N Engl J Med 2006;355:928–39
    CrossRefPubMedWeb of Science
  27. 27.↵
    1. Cebral JR,
    2. Castro MA,
    3. Appanaboyina S,
    4. et al
    . Efficient pipeline for image-based patient-specific analysis of cerebral aneurysm hemodynamics: technique and sensitivity. IEEE Trans Med Imaging 2005;24:457–67
    CrossRefPubMedWeb of Science
  28. 28.↵
    1. Thomas JB,
    2. Milner JS,
    3. Rutt BK,
    4. et al
    . Reproducibility of image-based computational fluid dynamics models of the human carotid bifurcation. Ann Biomed Eng 2003;31:132–41
    CrossRefPubMed
  29. 29.↵
    1. Romijn M,
    2. Gratama van Andel HA,
    3. van Walderveen MA,
    4. et al
    . Diagnostic accuracy of CT angiography with matched mask bone elimination for detection of intracranial aneurysms: comparison with digital subtraction angiography and 3D rotational angiography. AJNR Am J Neuroradiol 2008;29:134–39
    Abstract/FREE Full Text
  30. 30.↵
    1. Attene M,
    2. Falcidieno B
    . ReMESH: an interactive environment to edit and repair triangle meshes. In: Proceedings of IEEE International Conference on Shape Modeling and Applications, Matsushima, Japan. June 14–16, 2006:271–76
  31. 31.↵
    1. Reneman RS,
    2. Arts T,
    3. Hoeks AP
    . Wall shear stress, an important determinant of endothelial cell function and structure, in the arterial system in vivo: discrepancies with theory. J Vasc Res 2006;43:251–69
    CrossRefPubMedWeb of Science
  32. 32.↵
    1. Ku DN,
    2. Giddens DP,
    3. Zarins CK,
    4. et al
    . Pulsatile flow and atherosclerosis in the human carotid bifurcation: positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis 1985;5:293–302
    Abstract/FREE Full Text
  33. 33.↵
    1. Brennan RL,
    2. Prediger DJ
    . Coefficient kappa: some uses, misuses, and alternatives. Educ and Psychol Meas 1981;41:687–99
    CrossRef
  34. 34.↵
    1. Jou LD,
    2. Mohamed A,
    3. Lee DH,
    4. et al
    . 3D rotational digital subtraction angiography may underestimate intracranial aneurysms: findings from two basilar aneurysms. AJNR Am J Neuroradiol 2007;28:1690–92
    Abstract/FREE Full Text
  35. 35.↵
    1. Bowker TJ,
    2. Watton PN,
    3. Summers PE,
    4. et al
    . Rest versus exercise hemodynamics for middle cerebral artery aneurysms: a computational study. AJNR Am J Neuroradiol 2010;31:317–23
    Abstract/FREE Full Text
  36. 36.↵
    1. Dempere-Marco L,
    2. Oubel E,
    3. Castro MA,
    4. et al
    . CFD analysis incorporating the influence of wall motion: application to intracranial aneurysms. In: Proceedings of Medical Image Computing and Computer-Assisted Intervention, Copenhagen, Denmark. October 1–6, 2006:438–45
  37. 37.↵
    1. Castro MA,
    2. Putman CM,
    3. Cebral JR
    . Computational fluid dynamics modeling of intracranial aneurysms: effects of parent artery segmentation on intra-aneurysmal hemodynamics. AJNR Am J Neuroradiol 2006;27:1703–09
    Abstract/FREE Full Text
  38. 38.↵
    1. Venugopal P,
    2. Valentino D,
    3. Schmitt H,
    4. et al
    . Sensitivity of patient-specific numerical simulation of cerebral aneurysm hemodynamics to inflow boundary conditions. J Neurosurg 2007;106:1051–60
    CrossRefPubMed
  39. 39.↵
    1. Hoi Y,
    2. Wasserman BA,
    3. Lakatta EG,
    4. et al
    . Carotid bifurcation hemodynamics in older adults: effect of measured versus assumed flow waveform. J Biomech Eng 2010;132:071006
    CrossRefPubMed
  40. 40.↵
    1. Jiang JF,
    2. Strother C
    . Computational fluid dynamics simulations of intracranial aneurysms at varying heart rates: a “patient-specific” study. J Biomech Eng 2009;131:091001
    CrossRefPubMed
  41. 41.↵
    1. Hoi Y,
    2. Wasserman BA,
    3. Xie YJ,
    4. et al
    . Characterization of volumetric flow rate waveforms at the carotid bifurcations of older adults. Physiol Meas 2010;31:291–302
    CrossRefPubMed
  42. 42.↵
    1. Lell MM,
    2. Anders K,
    3. Uder M,
    4. et al
    . New techniques in CT angiography. Radiographics 2006;26:S45–62
    CrossRefPubMedWeb of Science
  43. 43.↵
    1. McKinney AM,
    2. Palmer CS,
    3. Truwit CL,
    4. et al
    . Detection of aneurysms by 64-section multidetector CT angiography in patients acutely suspected of having an intracranial aneurysm and comparison with digital subtraction and 3D rotational angiography. AJNR Am J Neuroradiol 2008;29:594–602
    Abstract/FREE Full Text
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 32 (3)
American Journal of Neuroradiology
Vol. 32, Issue 3
1 Mar 2011
  • Table of Contents
  • Index by author
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Patient-Specific Computational Hemodynamics of Intracranial Aneurysms from 3D Rotational Angiography and CT Angiography: An In Vivo Reproducibility Study
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
A.J. Geers, I. Larrabide, A.G. Radaelli, H. Bogunovic, M. Kim, H.A.F. Gratama van Andel, C.B. Majoie, E. VanBavel, A.F. Frangi
Patient-Specific Computational Hemodynamics of Intracranial Aneurysms from 3D Rotational Angiography and CT Angiography: An In Vivo Reproducibility Study
American Journal of Neuroradiology Mar 2011, 32 (3) 581-586; DOI: 10.3174/ajnr.A2306

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Patient-Specific Computational Hemodynamics of Intracranial Aneurysms from 3D Rotational Angiography and CT Angiography: An In Vivo Reproducibility Study
A.J. Geers, I. Larrabide, A.G. Radaelli, H. Bogunovic, M. Kim, H.A.F. Gratama van Andel, C.B. Majoie, E. VanBavel, A.F. Frangi
American Journal of Neuroradiology Mar 2011, 32 (3) 581-586; DOI: 10.3174/ajnr.A2306
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • Abbreviations
    • Materials and Methods
    • Results
    • Discussion
    • Conclusions
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • A Review of Intracranial Aneurysm Imaging Modalities, from CT to State-of-the-Art MR
  • Non-contrast enhanced silent MR angiography to evaluate hemodynamics and morphology of unruptured intracranial aneurysms: a comparative computational fluid dynamics study
  • 4D-CT angiography versus 3D-rotational angiography as the imaging modality for computational fluid dynamics of cerebral aneurysms
  • Quantitative and Qualitative Comparison of 4D-DSA with 3D-DSA Using Computational Fluid Dynamics Simulations in Cerebral Aneurysms
  • Critical role of angiographic acquisition modality and reconstruction on morphometric and haemodynamic analysis of intracranial aneurysms
  • CFD: Computational Fluid Dynamics or Confounding Factor Dissemination? The Role of Hemodynamics in Intracranial Aneurysm Rupture Risk Assessment
  • Mind the Gap: Impact of Computational Fluid Dynamics Solution Strategy on Prediction of Intracranial Aneurysm Hemodynamics and Rupture Status Indicators
  • 3D Cine Phase-Contrast MRI at 3T in Intracranial Aneurysms Compared with Patient-Specific Computational Fluid Dynamics
  • Intracranial Aneurysm Neck Size Overestimation with 3D Rotational Angiography: The Impact on Intra-Aneurysmal Hemodynamics Simulated with Computational Fluid Dynamics
  • Point: CFD--Computational Fluid Dynamics or Confounding Factor Dissemination
  • Reply:
  • Identifying "Truth" in Computational Fluid Dynamics Research
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • A Retrospective Study in Tentorial DAVFs
  • Proximal Protection Devices for Carotid Stenting
  • Rescue Reentry in Carotid Near-Occlusion
Show more NEUROINTERVENTION

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire