Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Research ArticleBrain

Permeability Estimates in Histopathology-Proved Treatment-Induced Necrosis Using Perfusion CT: Can These Add to Other Perfusion Parameters in Differentiating from Recurrent/Progressive Tumors?

R. Jain, J. Narang, L. Schultz, L. Scarpace, S. Saksena, S. Brown, J.P. Rock, M. Rosenblum, J. Gutierrez and T. Mikkelsen
American Journal of Neuroradiology April 2011, 32 (4) 658-663; DOI: https://doi.org/10.3174/ajnr.A2378
R. Jain
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J. Narang
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
L. Schultz
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
L. Scarpace
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S. Saksena
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S. Brown
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J.P. Rock
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M. Rosenblum
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J. Gutierrez
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
T. Mikkelsen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Cheronov M,
    2. Hayashi M,
    3. Izawa M,
    4. et al
    . Differentiation of the radiation-induced necrosis and tumor recurrence after gamma knife radiosurgery for brain metastases: importance of multivoxel proton MRS. Minim Invasive Neurosurg 2005;48:228–34
    CrossRefPubMedWeb of Science
  2. 2.↵
    1. Graves EE,
    2. Nelson SJ,
    3. Vigneron DB,
    4. et al
    . Serial proton MR spectroscopic imaging of recurrent malignant gliomas after gamma knife radiosurgery. AJNR Am J Neuroradiol 2001;22:613–24
    Abstract/FREE Full Text
  3. 3.↵
    1. Kumar AJ,
    2. Leeds NE,
    3. Fuller GN,
    4. et al
    . Malignant gliomas: MR imaging spectrum of radiation therapy- and chemotherapy-induced necrosis of the brain after treatment. Radiology 2000;217:377–84
    CrossRefPubMedWeb of Science
  4. 4.↵
    1. Jain R,
    2. Narang J,
    3. Sundgren PM,
    4. et al
    . Treatment induced necrosis versus recurrent/progressing brain tumor: going beyond the boundaries of conventional morphologic imaging. J Neurooncol 2010;100:17–29.Epub 2010 Feb 24
    CrossRefPubMed
  5. 5.↵
    1. Langleben DD,
    2. Segall GM
    . PET in differentiation of recurrent brain tumor from radiation injury. J Nucl Med 2000;41:1861–67
    Abstract/FREE Full Text
  6. 6.↵
    1. Covarrubias DJ,
    2. Rosen BR,
    3. Lev H
    . Dynamic magnetic resonance perfusion imaging of brain tumors. Oncologist 2004;9:528–37
    Abstract/FREE Full Text
  7. 7.↵
    1. Jain R,
    2. Scarpace L,
    3. Ellika S,
    4. et al
    . First-pass perfusion computed tomography: initial experience in differentiating recurrent brain tumors from radiation effects and radiation necrosis. Neurosurgery 2007;61:778–86
    PubMedWeb of Science
  8. 8.↵
    1. Cha S,
    2. Lupo JM,
    3. Chen MH,
    4. et al
    . Differentiation of glioblastoma multiforme and single brain metastasis by peak height and percentage of signal intensity recovery derived from dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. AJNR Am J Neuroradiol 2007;28:1078–84
    Abstract/FREE Full Text
  9. 9.↵
    1. Hu LS,
    2. Baxter LC,
    3. Smith KA,
    4. et al
    . Relative cerebral blood volume values to differentiate high-grade glioma recurrence from post treatment radiation effect: direct correlation between image-guided tissue histopathology and localized dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging measurements. AJNR Am J Neuroradiol 2009;30:552–58
    Abstract/FREE Full Text
  10. 10.↵
    1. Ellika SK,
    2. Jain R,
    3. Patel SC,
    4. et al
    . Role of perfusion CT in glioma grading and comparison with conventional MR imaging features. AJNR Am J Neuroradiol 2007;28:1981–87
    Abstract/FREE Full Text
  11. 11.↵
    1. Law M,
    2. Yang S,
    3. Babb JS,
    4. et al
    . Comparison of cerebral blood volume and vascular permeability from dynamic susceptibility contrast-enhanced perfusion MR imaging with glioma grade. AJNR Am J Neuroradiol 2004;25:746–55
    Abstract/FREE Full Text
  12. 12.↵
    1. Sorensen AG,
    2. Batchelor TT,
    3. Zhang WT,
    4. et al
    . A “vascular normalization index” as potential mechanistic biomarker to predict survival after a single dose of cediranib in recurrent glioblastoma patients. Cancer Res 2009;69:5296–300.Epub 2009 Jun 23
    Abstract/FREE Full Text
  13. 13.↵
    1. Barajas RF Jr.,
    2. Chang JS,
    3. Segal MR,
    4. et al
    . Differentiation of recurrent glioblastoma multiforme from radiation necrosis after external beam radiation therapy with dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. Radiology 2009;253:486–96
    CrossRefPubMedWeb of Science
  14. 14.↵
    1. Hazle JD,
    2. Jackson EF,
    3. Schomer DF,
    4. et al
    . Dynamic imaging of intracranial lesions using fast spin-echo imaging: differentiation of brain tumors and treatment effects. J Magn Reson Imaging 1997;7:1084–93
    PubMedWeb of Science
  15. 15.↵
    1. Jain R,
    2. Ellika SK,
    3. Scarpace L,
    4. et al
    . Quantitative estimation of permeability surface-area product in astroglial brain tumors using perfusion CT and correlation with histopathologic grade. AJNR Am J Neuroradiol 2008;29:694–700
    Abstract/FREE Full Text
  16. 16.↵
    1. Hopewell JW,
    2. Wright EA
    . The nature of latent cerebral irradiation damage and its modification by hypertension. Br J Radiol 1970;43:161–67
    Abstract/FREE Full Text
  17. 17.↵
    1. Zhao W,
    2. Diz DI,
    3. Robbins ME
    . Oxidative damage pathways in relation to normal tissue injury. Br J Radiol 2007;80:S23–31
    Abstract/FREE Full Text
  18. 18.↵
    1. Lundqvist H,
    2. Rosander K,
    3. Lomanov M,
    4. et al
    . Permeability of the blood-brain barrier in the rat after local proton irradiation. Acta Radiol Oncol 1982;21:267–71
    CrossRefPubMed
  19. 19.↵
    1. Remler MP,
    2. Marcussen WH
    . Time course of early delayed blood-brain barrier changes in individual cats after ionizing radiation. Exp Neurol 1981;73:310–14
    CrossRefPubMed
  20. 20.↵
    1. Remler MP,
    2. Marcussen WH,
    3. Tiller-Borsich J
    . The late effects of radiation on the blood brain barrier. Int J Radiat Oncol Biol Phys 1986;12:1965–69
    CrossRefPubMed
  21. 21.↵
    1. Kamiryo T,
    2. Lopes MB,
    3. Kassell NF,
    4. et al
    . Radiosurgery-induced microvascular alterations precede necrosis of the brain neuropil. Neurosurgery 2001;49:409–14,discussion 414–15
    CrossRefPubMedWeb of Science
  22. 22.↵
    1. Bernstein M,
    2. Marotta T,
    3. Stewart P,
    4. et al
    . Brain damage from 125I brachytherapy evaluated by MR imaging, a blood-brain barrier tracer, and light and electron microscopy in a rat model. J Neurosurg 1990;73:585–93
    CrossRefPubMed
  23. 23.↵
    1. Rubin P,
    2. Gash DM,
    3. Hansen JT,
    4. et al
    . Disruption of the blood-brain barrier as the primary effect of CNS irradiation. Radiother Oncol 1994;31:51–60
    CrossRefPubMedWeb of Science
  24. 24.↵
    1. Cao Y,
    2. Tsien CI,
    3. Sundgren PC,
    4. et al
    . Dynamic contrast-enhanced magnetic resonance imaging as a biomarker for prediction of radiation-induced neurocognitive dysfunction. Clin Cancer Res 2009;15:1747–54
    Abstract/FREE Full Text
  25. 25.↵
    1. Lee MC,
    2. Cha S,
    3. Chang SM,
    4. et al
    . Dynamic susceptibility contrast perfusion imaging of radiation effects in normal-appearing brain tissue: changes in the first-pass and recirculation phases. J Magn Reson Imaging 2005;21:683–93
    CrossRefPubMedWeb of Science
  26. 26.↵
    1. Jain R,
    2. Ellika S,
    3. Lehman NL,
    4. et al
    . Can permeability measurements add to blood volume measurements in differentiating tumefactive demyelinating lesions from high grade gliomas using perfusion CT? J Neurooncol 2010;97:383–88
    CrossRefPubMed
  27. 27.↵
    1. Barajas RF,
    2. Chang JS,
    3. Sneed PK,
    4. et al
    . Distinguishing recurrent intra-axial metastatic tumor from radiation necrosis following gamma knife radiosurgery using dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. AJNR Am J Neuroradiol 2009;30:367–72
    Abstract/FREE Full Text
  28. 28.↵
    1. Jain R,
    2. Gutierrez J,
    3. Narang J,
    4. et al
    . In vivo correlation of tumor blood volume and permeability with histological and molecular angiogenic markers in gliomas. AJNR Am J Neuroradiol 2011;32:388–94
    Abstract/FREE Full Text
  29. 29.↵
    1. Nordal RA,
    2. Nagy A,
    3. Pintilie M,
    4. et al
    . Hypoxia and hypoxia-inducible factor-1 target genes in central nervous system radiation injury: a role for vascular endothelial growth factor. Clin Cancer Res 2004;10:3342–53
    Abstract/FREE Full Text
  30. 30.↵
    1. Gonzalez J,
    2. Kumar AJ,
    3. Conrad CA,
    4. et al
    . Effect of bevacizumab on radiation necrosis of the brain. Int J Radiat Oncol Biol Phys 2007;67:323–26
    CrossRefPubMedWeb of Science
  31. 31.↵
    1. Torcuator R,
    2. Zuniga R,
    3. Mohan YS,
    4. et al
    . Initial experience with bevacizumab treatment for biopsy confirmed cerebral radiation necrosis. J Neurooncol 2009;94:63–68
    CrossRefPubMed
  32. 32.↵
    1. Gaensler EH,
    2. Dillon WP,
    3. Edwards MS,
    4. et al
    . Radiation-induced telangiectasia in the brain simulates cryptic vascular malformations at MR imaging. Radiology 1994;193:629–36
    PubMed
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 32 (4)
American Journal of Neuroradiology
Vol. 32, Issue 4
1 Apr 2011
  • Table of Contents
  • Index by author
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Permeability Estimates in Histopathology-Proved Treatment-Induced Necrosis Using Perfusion CT: Can These Add to Other Perfusion Parameters in Differentiating from Recurrent/Progressive Tumors?
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
R. Jain, J. Narang, L. Schultz, L. Scarpace, S. Saksena, S. Brown, J.P. Rock, M. Rosenblum, J. Gutierrez, T. Mikkelsen
Permeability Estimates in Histopathology-Proved Treatment-Induced Necrosis Using Perfusion CT: Can These Add to Other Perfusion Parameters in Differentiating from Recurrent/Progressive Tumors?
American Journal of Neuroradiology Apr 2011, 32 (4) 658-663; DOI: 10.3174/ajnr.A2378

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Permeability Estimates in Histopathology-Proved Treatment-Induced Necrosis Using Perfusion CT: Can These Add to Other Perfusion Parameters in Differentiating from Recurrent/Progressive Tumors?
R. Jain, J. Narang, L. Schultz, L. Scarpace, S. Saksena, S. Brown, J.P. Rock, M. Rosenblum, J. Gutierrez, T. Mikkelsen
American Journal of Neuroradiology Apr 2011, 32 (4) 658-663; DOI: 10.3174/ajnr.A2378
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • Abbreviations
    • Materials and Methods
    • Results
    • Discussion
    • Conclusions
    • References
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Differentiation between Treatment-Induced Necrosis and Recurrent Tumors in Patients with Metastatic Brain Tumors: Comparison among 11C-Methionine-PET, FDG-PET, MR Permeability Imaging, and MRI-ADC--Preliminary Results
  • Histogram Analysis of Intravoxel Incoherent Motion for Differentiating Recurrent Tumor from Treatment Effect in Patients with Glioblastoma: Initial Clinical Experience
  • Perfusion CT Imaging of Brain Tumors: An Overview
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • Enhanced Axonal Metabolism during Early Natalizumab Treatment in Relapsing-Remitting Multiple Sclerosis
  • Progression of Microstructural Damage in Spinocerebellar Ataxia Type 2: A Longitudinal DTI Study
  • SWI or T2*: Which MRI Sequence to Use in the Detection of Cerebral Microbleeds? The Karolinska Imaging Dementia Study
Show more Brain

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire