Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Research ArticleBrain
Open Access

Using High-Resolution MR Imaging at 7T to Evaluate the Anatomy of the Midbrain Dopaminergic System

M. Eapen, D.H. Zald, J.C. Gatenby, Z. Ding and J.C. Gore
American Journal of Neuroradiology April 2011, 32 (4) 688-694; DOI: https://doi.org/10.3174/ajnr.A2355
M. Eapen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D.H. Zald
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J.C. Gatenby
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Z. Ding
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J.C. Gore
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Oades R,
    2. Halliday GM
    . Ventral tegmental (A10) system: neurobiology. 1. Anatomy and connectivity. Brain Res 1987;434:117–65
    PubMed
  2. 2.↵
    1. Williams S,
    2. Goldman-Rakic P
    . Widespread origin of the primate mesofrontal dopamine system. Cereb Cortex 1998;8:321–45
    Abstract/FREE Full Text
  3. 3.↵
    1. Francois C,
    2. Yelnik J,
    3. Percheron G
    . Golgi study of the primate substantia nigra. II. Spatial organization of dendritic arborizations in relation to the cytoarchitectonic boundaries and to the striatonigral bundle. J Comp Neurol 1987;265:473–93
    CrossRefPubMedWeb of Science
  4. 4.↵
    1. Grace AA,
    2. Bunney BS
    . The control of firing pattern in nigral dopamine neurons: burst firing. J Neurosci 1984;4:2877–90
    Abstract
  5. 5.↵
    1. Schultz W,
    2. Romo R
    . Dopamine neurons of the monkey midbrain: contingencies of responses to stimuli eliciting immediate behavioral reactions. J Neurophysiol 1990;63:607–24
    Abstract/FREE Full Text
  6. 6.↵
    1. Salamone JD
    . The behavioral neurochemistry of motivation: methodological and conceptual issues in studies of the dynamic activity of nucleus accumbens dopamine. J Neurosci Methods 1996;64:137–49
    CrossRefPubMedWeb of Science
  7. 7.↵
    1. Ikemoto S,
    2. Panksepp J
    . The role of nucleus accumbens dopamine in motivated behavior: a unifying interpretation with special reference to reward-seeking. Brain Res Brain Res Rev 1999;31:6–41
    CrossRefPubMedWeb of Science
  8. 8.↵
    1. Redgrave P,
    2. Prescott TJ,
    3. Gurney K
    . Is the short-latency dopamine response too short to signal reward error? Trends Neurosci 1999;22:146–51
    CrossRefPubMedWeb of Science
  9. 9.↵
    1. Kakade S,
    2. Dayan P
    . Dopamine: generalization and bonuses. Neural Netw 2002;15:549–59
    CrossRefPubMedWeb of Science
  10. 10.↵
    1. Schultz W
    . Predictive reward signal of dopamine neurons. J Neurophysiol 1998;80:1–27
    Abstract/FREE Full Text
  11. 11.↵
    1. Fearnley JM,
    2. Lees AJ
    . Ageing and Parkinson's disease: substantia nigra regional selectivity. Brain 1991;114:2283–301
    Abstract/FREE Full Text
  12. 12.↵
    1. Tomasi D,
    2. Goldstein RZ,
    3. Telang F,
    4. et al
    . Widespread disruption in brain activation patterns to a working memory task during cocaine abstinence. Brain Res 2007;1171:83–92
    CrossRefPubMedWeb of Science
  13. 13.↵
    1. Takahashi H,
    2. Koeda M,
    3. Oda K,
    4. et al
    . An fMRI study of differential neural response to affective pictures in schizophrenia. Neuroimage 2004;22:1247–54
    CrossRefPubMedWeb of Science
  14. 14.↵
    1. Murray GK,
    2. Corlett PR,
    3. Clark L,
    4. et al
    . Substantia nigra/ventral tegmental reward prediction error disruption in psychosis. Mol Psychiatry 2008;13:267–76
    CrossRefWeb of Science
  15. 15.↵
    1. Duguid J,
    2. Paz RDL,
    3. DeGroot J
    . Magnetic resonance imaging of the midbrain in Parkinson's disease. Ann Neurol 1986;20:744–47
    CrossRefPubMedWeb of Science
  16. 16.↵
    1. Snyder AM,
    2. Connor JR
    . Iron, the substantia nigra and related neurological disorders. Biochim Biophys Acta 2009;1790:606–14.Epub 2008 Aug 20
    CrossRefPubMed
  17. 17.↵
    1. Shibata E,
    2. Sasaki M,
    3. Tohyama K,
    4. et al
    . Use of neuromelanin-sensitive MRI to distinguish schizophrenic and depressive patients and healthy individuals based on signal alterations in the substantia nigra and locus ceruleus. Biol Psychiatry 2008;64:401–06
    CrossRefPubMedWeb of Science
  18. 18.↵
    1. Manova ES,
    2. Habib CA,
    3. Boikov AS,
    4. et al
    . Characterizing the mesencephalon using susceptibility-weighted imaging. AJNR Am J Neuroradiol 2009;30:569–74.Epub 2008 Dec 26
    Abstract/FREE Full Text
  19. 19.↵
    1. Thomas BP,
    2. Welch EB,
    3. Niederhauser BD,
    4. et al
    . High-resolution 7T MRI of the human hippocampus in vivo. J Magn Reson Imaging 2008;28:1266–72
    CrossRefPubMedWeb of Science
  20. 20.↵
    1. Zecca L,
    2. Berg D,
    3. Arzberger T,
    4. et al
    . In vivo detection of iron and neuromelanin by transcranial sonography: a new approach for early detection of substantia nigra damage. Mov Disord 2005;20:1278–85
    CrossRefPubMedWeb of Science
  21. 21.↵
    1. Sofic E,
    2. Riederer P,
    3. Heinsen H,
    4. et al
    . Increased iron (III) and total iron content in post mortem substantia nigra of parkinsonian brain. J Neural Transm 1988;74:199–205
    CrossRefPubMedWeb of Science
  22. 22.↵
    1. Connor JR,
    2. Menzies SL
    . Cellular management of iron in the brain. J Neurol Sci 1995;134:33–44
    PubMedWeb of Science
  23. 23.↵
    1. Zecca L,
    2. Gallorini M,
    3. Schuenemann V,
    4. et al
    . Iron, neuromelanin and ferritin content in the substantia nigra of normal subjects at different ages: consequences for iron storage and neurodegenerative processes. J Neurochem 2001;76:1766–73
    CrossRefPubMedWeb of Science
  24. 24.↵
    1. Sasaki M,
    2. Shibata E,
    3. Tohyama K,
    4. et al
    . Neuromelanin magnetic resonance imaging of locus ceruleus and substantia nigra in Parkinson's disease. Neuroreport 2006;17:1215–18
    CrossRefPubMedWeb of Science
  25. 25.↵
    1. Semnic R,
    2. Svetel M,
    3. Dragasevic N,
    4. et al
    . Magnetic resonance imaging morphometry of the midbrain in patients with Wilson disease. J Comput Assist Tomogr 2005;29:880–83
    CrossRefPubMed
  26. 26.↵
    1. Feinberg DA,
    2. Oshio K
    . GRASE (gradient- and spin-echo) MR imaging: a new fast clinical imaging technique. Radiology 1991;181:597–602
    PubMed
  27. 27.↵
    1. Bernstein MA,
    2. King KF,
    3. Zhou XJ
    . Handbook of MRI Pulse Sequences. San Diego, California:Elsevier Academic Press;2004:584
  28. 28.↵
    1. Li C,
    2. Kao C-Y,
    3. Gore JC,
    4. et al
    . Minimization of region-scalable fitting energy for image segmentation. IEEE Trans Image Process 2008;17:1940–49
    CrossRefPubMedWeb of Science
  29. 29.↵
    1. Naidich TP,
    2. Duvernoy HM,
    3. Delman BN,
    4. et al
    . Duvernoy's Atlas of the Human Brain Stem and Cerebellum: High-Field MRI, Surface Anatomy, Internal Structure, Vascularization and 3D Sectional Anatomy. New York:Springer-Verlag/Wien;2009:84–89,356
  30. 30.↵
    1. Paxinos G,
    2. Huang X
    . Atlas of the Human Brainstem. San Diego, California:Elsevier Academic Press;1995:51–64
  31. 31.↵
    1. Duvernoy HM
    . Human Brain Stem Vessels. 2nd ed. Berlin:Springer-Verlag;1999:206–18
  32. 32.↵
    1. Drayer B,
    2. Burger P,
    3. Darwin R,
    4. et al
    . MRI of brain iron. AJR Am J Roentgenol 1986;147:103–10
    PubMedWeb of Science
  33. 33.↵
    1. Braak H,
    2. Braak E
    . Nuclear configuration and neuronal types of the nucleus niger in the brain of the human adult. Hum Neurobiol 1986;5:71–82
    PubMedWeb of Science
  34. 34.↵
    1. Yelnik J,
    2. François C,
    3. Percheron G,
    4. et al
    . Golgi study of the primate substantia nigra. I. Quantitative morphology and typology of nigral neurons. J Comp Neurol 1987;265:455–72
    CrossRefPubMedWeb of Science
  35. 35.↵
    1. Zecca L,
    2. Pietra R,
    3. Goj C,
    4. et al
    . Iron and other metals in neuromelanin, substantia nigra, and putamen of human brain. J Neurochem 1994;62:1097–101
    PubMedWeb of Science
  36. 36.↵
    1. Double K,
    2. Gerlach M,
    3. Schünemann V,
    4. et al
    . Iron-binding characteristics of neuromelanin of the human substantia nigra. Biochem Pharmacol 2003;66:489–94
    CrossRefPubMedWeb of Science
  37. 37.↵
    1. Rutledge JN,
    2. Hilal SK,
    3. Silver AJ,
    4. et al
    . Study of movement disorders and brain iron by MR. AJR Am J Roentgenol 1987;149:365–79
    PubMedWeb of Science
  38. 38.↵
    1. Tosk J,
    2. Holshouser B,
    3. Aloia R,
    4. et al
    . Effects of the interaction between ferric iron and L-dopa melanin on T1 and T2 relaxation times determined by magnetic resonance imaging. Magn Reson Med 1992;26:40–45
    CrossRefPubMed
  39. 39.↵
    1. Drayer B,
    2. Olanow W,
    3. Burger P,
    4. et al
    . Parkinson plus syndrome: diagnosis using high field MR imaging of brain iron. Radiology 1986;159:493–98
    PubMedWeb of Science
  40. 40.↵
    1. Braffman BH,
    2. Grossman RI,
    3. Goldberg HI,
    4. et al
    . MR imaging of Parkinson disease with spin-echo and gradient-echo sequences. AJR Am J Roentgenol 1989;152:159–65
    PubMedWeb of Science
  41. 41.↵
    1. Martin W,
    2. Wieler M,
    3. Gee M
    . Midbrain iron content in early Parkinson disease: a potential biomarker of disease status. Neurology 2008;70:1411–17
    Abstract/FREE Full Text
  42. 42.↵
    1. Dexter DT,
    2. Carayon A,
    3. Javoy-Agid F,
    4. et al
    . Alterations in the levels of iron, ferritin and other trace metals in Parkinson's disease and other neurodegenerative diseases affecting the basal ganglia. Brain 1991;114:1953–75
    Abstract/FREE Full Text
  43. 43.↵
    1. Drayer BP
    . Imaging of the aging brain. Part II. Pathologic conditions. Radiology 1988;166:797–806
    PubMedWeb of Science
  44. 44.↵
    1. Stern M,
    2. Braffman B,
    3. Skolnick B,
    4. et al
    . Magnetic resonance imaging in Parkinson's disease and parkinsonian syndromes. Neurology 1989;39:1524–26
    Abstract/FREE Full Text
  45. 45.↵
    1. Ordidge R,
    2. Gorell J,
    3. Deniau J,
    4. et al
    . Assessment of relative brain iron concentrations using T2-weighted and T2*-weighted MRI at 3 Tesla. Magn Reson Med 1994;32:335–41
    CrossRefPubMedWeb of Science
  46. 46.↵
    1. Gorell J,
    2. Ordidge R,
    3. Brown G,
    4. et al
    . Increased iron-related MRI contrast in the substantia nigra in Parkinson's disease. Neurology 1995;45:1138–43
    Abstract/FREE Full Text
  47. 47.↵
    1. Bunzeck N,
    2. Duzel E
    . Absolute coding of stimulus novelty in the human substantia nigra/VTA. Neuron 2006;51:369–79
    CrossRefPubMedWeb of Science
  48. 48.↵
    1. D'Ardenne K,
    2. McClure SM,
    3. Nystrom LE,
    4. et al
    . BOLD responses reflecting dopaminergic signals in the human ventral tegmental area. Science 2008;319:1264–67
    Abstract/FREE Full Text
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 32 (4)
American Journal of Neuroradiology
Vol. 32, Issue 4
1 Apr 2011
  • Table of Contents
  • Index by author
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Using High-Resolution MR Imaging at 7T to Evaluate the Anatomy of the Midbrain Dopaminergic System
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
M. Eapen, D.H. Zald, J.C. Gatenby, Z. Ding, J.C. Gore
Using High-Resolution MR Imaging at 7T to Evaluate the Anatomy of the Midbrain Dopaminergic System
American Journal of Neuroradiology Apr 2011, 32 (4) 688-694; DOI: 10.3174/ajnr.A2355

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Using High-Resolution MR Imaging at 7T to Evaluate the Anatomy of the Midbrain Dopaminergic System
M. Eapen, D.H. Zald, J.C. Gatenby, Z. Ding, J.C. Gore
American Journal of Neuroradiology Apr 2011, 32 (4) 688-694; DOI: 10.3174/ajnr.A2355
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • Abbreviations
    • Materials and Methods
    • Results
    • Discussion
    • Conclusions
    • Footnotes
    • References
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • Sensing and seeing associated with overlapping occipitoparietal activation in simultaneous EEG-fMRI
  • Direct In Vivo MRI Discrimination of Brain Stem Nuclei and Pathways
  • The role of dopaminergic nuclei in predicting and experiencing gains and losses: A 7T human fMRI study
  • Reproducibility of the correlative triad among aging, dopamine receptor availability, and cognition
  • 3T MRI Whole-Brain Microscopy Discrimination of Subcortical Anatomy, Part 1: Brain Stem
  • Perceptual Competition Promotes Suppression of Reward Salience in Behavioral Selection and Neural Representation
  • New Clinically Feasible 3T MRI Protocol to Discriminate Internal Brain Stem Anatomy
  • Brain regulation of appetite in twins
  • Distinct Contributions of Ventromedial and Dorsolateral Subregions of the Human Substantia Nigra to Appetitive and Aversive Learning
  • Ultra-High-Field MR Neuroimaging
  • Usefulness of Quantitative Susceptibility Mapping for the Diagnosis of Parkinson Disease
  • Influence of Motivation on Control Hierarchy in the Human Frontal Cortex
  • Distinct Midbrain and Habenula Pathways Are Involved in Processing Aversive Events in Humans
  • Low-Power Inversion Recovery MRI Preserves Brain Tissue Contrast for Patients with Parkinson Disease with Deep Brain Stimulators
  • Visualization of nigrosome 1 and its loss in PD: Pathoanatomical correlation and in vivo 7 T MRI
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • Predictors of Reperfusion in Patients with Acute Ischemic Stroke
  • Enhanced Axonal Metabolism during Early Natalizumab Treatment in Relapsing-Remitting Multiple Sclerosis
  • Progression of Microstructural Damage in Spinocerebellar Ataxia Type 2: A Longitudinal DTI Study
Show more Brain

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire