Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Research ArticleBrain

Correlations between Perfusion MR Imaging Cerebral Blood Volume, Microvessel Quantification, and Clinical Outcome Using Stereotactic Analysis in Recurrent High-Grade Glioma

L.S. Hu, J.M. Eschbacher, A.C. Dueck, J.E. Heiserman, S. Liu, J.P. Karis, K.A. Smith, W.R. Shapiro, D.S. Pinnaduwage, S.W. Coons, P. Nakaji, J. Debbins, B.G. Feuerstein and L.C. Baxter
American Journal of Neuroradiology January 2012, 33 (1) 69-76; DOI: https://doi.org/10.3174/ajnr.A2743
L.S. Hu
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J.M. Eschbacher
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A.C. Dueck
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J.E. Heiserman
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S. Liu
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J.P. Karis
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
K.A. Smith
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
W.R. Shapiro
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D.S. Pinnaduwage
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S.W. Coons
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P. Nakaji
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J. Debbins
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
B.G. Feuerstein
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
L.C. Baxter
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Sharma S,
    2. Sharma MC,
    3. Sarkar C
    . Morphology of angiogenesis in human cancer: a conceptual overview, histoprognostic perspective and significance of neoangiogenesis. Histopathology 2005;46:481–89
    CrossRefPubMedWeb of Science
  2. 2.↵
    1. Schiffer D,
    2. Chio A,
    3. Mauro GA,
    4. et al
    . The vascular response to tumor infiltration in malignant gliomas. Acta Neuropathol 1989;77:369–78
    CrossRefPubMed
  3. 3.↵
    1. Abdulrauf SI,
    2. Edvardsen K,
    3. Ho KL,
    4. et al
    . Vascular endothelial growth factor expression and vascular density as prognostic markers of survival in patients with low-grade astrocytoma. J Neurosurg 1998;88:513–20
    PubMedWeb of Science
  4. 4.↵
    1. Korkolopoulou P,
    2. Patsouris E,
    3. Kavantzas N,
    4. et al
    . Prognostic implications of microvessel morphometry in diffuse astrocytic neoplasms. Neuropathol Appl Neurobiol 2002;28:57–66
    CrossRefPubMed
  5. 5.↵
    1. Leon SP,
    2. Folkerth RD,
    3. Black PM
    . Microvessel density is a prognostic indicator for patients with astroglial brain tumors. Cancer 1996;77:362–72
    CrossRefPubMedWeb of Science
  6. 6.↵
    1. Wesseling P,
    2. van der Laak JA,
    3. Link M,
    4. et al
    . Quantitative analysis of microvascular changes in diffuse astrocytic neoplasms with increasing grade of malignancy. Hum Pathol 1998;29:352–28
    CrossRefPubMedWeb of Science
  7. 7.↵
    1. Wesseling P,
    2. van der Laak JA,
    3. de Leeuw H,
    4. et al
    . Quantitative immunohistological analysis of the microvasculature in untreated human glioblastoma multiforme: computer-assisted image analysis of whole-tumor sections. J Neurosurg 1994;81:902–09
    CrossRefPubMedWeb of Science
  8. 8.↵
    1. Birner P,
    2. Piribauer M,
    3. Fischer I,
    4. et al
    . Vascular patterns in glioblastoma influence clinical outcome and associate with variable expression of angiogenic proteins: evidence for distinct angiogenic subtypes. Brain Pathol 2003;13:133–43
    PubMedWeb of Science
  9. 9.↵
    1. Folkerth RD
    . Histologic measures of angiogenesis in human primary brain tumors. Cancer Treat Res 2004;117:79–95
    PubMed
  10. 10.↵
    1. Korkolopoulou P,
    2. Patsouris E,
    3. Konstantinidou AE,
    4. et al
    . Hypoxia-inducible factor 1alpha/vascular endothelial growth factor axis in astrocytomas. Associations with microvessel morphometry, proliferation and prognosis. Neuropathol Appl Neurobiol 2004;30:267–78
    CrossRefPubMedWeb of Science
  11. 11.↵
    1. Weidner N,
    2. Semple JP,
    3. Welch WR,
    4. et al
    . Tumor angiogenesis and metastasis: correlation in invasive breast carcinoma. N Engl J Med 1991;324:1–8
    CrossRefPubMedWeb of Science
  12. 12.↵
    1. Macchiarini P,
    2. Fontaini G,
    3. Hardin MJ,
    4. et al
    . Relation of neovasculature to metastasis of non-small lung cancer. Lancet 1992;340:145–46
    CrossRefPubMedWeb of Science
  13. 13.↵
    1. Hollingsworth HC,
    2. Kohn EC,
    3. Steinberg SM,
    4. et al
    . Tumor angiogenesis in advanced stage ovarian carcinoma. Am J Pathol 1995;147:33
    PubMedWeb of Science
  14. 14.↵
    1. Bono AV,
    2. Celato N,
    3. Cova V,
    4. et al
    . Microvessel density in prostate carcinoma. Prostate Cancer Prostatic Dis 2002;5:123–27
    CrossRefPubMedWeb of Science
  15. 15.↵
    1. Delahunt B,
    2. Bethwaite PB,
    3. Thornton A
    . Prognostic significance of microscopic vascularity for clear cell renal cell carcinoma. Br J Urol 1997;80:401–04
    PubMedWeb of Science
  16. 16.↵
    1. Lev MH,
    2. Ozsunar Y,
    3. Henson JW,
    4. et al
    . Glial tumor grading and outcome prediction using dynamic spin-echo MR susceptibility mapping compared with conventional contrast-enhanced MR: confounding effect of elevated rCBV of oligodendrogliomas [corrected]. AJNR Am J Neuroradiol 2004;25:214–21
    Abstract/FREE Full Text
  17. 17.↵
    1. Knopp EA,
    2. Cha S,
    3. Johnson G,
    4. et al
    . Glial neoplasms: dynamic contrast-enhanced T2*-weighted MR imaging. Radiology 1999;211:791–98
    CrossRefPubMedWeb of Science
  18. 18.↵
    1. Boxerman JL,
    2. Schmainda KM,
    3. Weisskoff RM
    . Relative cerebral blood volume maps corrected for contrast agent extravasation significantly correlate with glioma tumor grade, whereas uncorrected maps do not. AJNR Am J Neuroradiol 2006;27:859–67
    Abstract/FREE Full Text
  19. 19.↵
    1. Law M,
    2. Yang S,
    3. Wang H,
    4. et al
    . Glioma grading: sensitivity, specificity, and predictive values of perfusion MR imaging and proton MR spectroscopic imaging compared with conventional MR imaging. AJNR Am J Neuroradiol 2003;24:1989–98
    Abstract/FREE Full Text
  20. 20.↵
    1. Law M,
    2. Young RJ,
    3. Babb JS,
    4. et al
    . Gliomas: predicting time to progression or survival with cerebral blood volume measurements at dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. Radiology 2008;247:490–98. Epub 2008 Mar 18
    CrossRefPubMedWeb of Science
  21. 21.↵
    1. Cha S,
    2. Johnson G,
    3. Wadghiri YZ,
    4. et al
    . Dynamic, contrast-enhanced perfusion MRI in mouse gliomas: correlation with histopathology. Magn Reson Med 2003;49:848–55
    CrossRefPubMedWeb of Science
  22. 22.↵
    1. Pathak AP,
    2. Schmainda KM,
    3. Ward BD,
    4. et al
    . MR-derived cerebral blood volume maps: issues regarding histological validation and assessment of tumor angiogenesis. Magn Reson Med 2001;46:735–47
    CrossRefPubMedWeb of Science
  23. 23.↵
    1. Ali MM,
    2. Janic B,
    3. Babajani-Feremi A,
    4. et al
    . Changes in vascular permeability and expression of different angiogenic factors following anti-angiogenic treatment in rat glioma. PLoS One 2010;5:e8727
    CrossRefPubMed
  24. 24.↵
    1. Muruganandham M,
    2. Lupu M,
    3. Dyke JP,
    4. et al
    . Preclinical evaluation of tumor microvascular response to a novel antiangiogenic/antitumor agent RO0281501 by dynamic contrast-enhanced MRI at 1.5 T. Mol Cancer Ther 2006;5:1950–57
    Abstract/FREE Full Text
  25. 25.↵
    1. Wilmes LJ,
    2. Pallavicini MG,
    3. Fleming LM,
    4. et al
    . AG-013736, a novel inhibitor of VEGF receptor tyrosine kinases, inhibits breast cancer growth and decreases vascular permeability as detected by dynamic contrast-enhanced magnetic resonance imaging. Magn Reson Imaging 2007;25:319–27
    CrossRefPubMed
  26. 26.↵
    1. Hyodo F,
    2. Chandramouli GV,
    3. Matsumoto S,
    4. et al
    . Estimation of tumor microvessel density by MRI using a blood pool contrast agent. Int J Oncol 2009;35:797–804
    PubMed
  27. 27.↵
    1. Drevs J,
    2. Müller-Driver R,
    3. Wittig C,
    4. et al
    . PTK787/ZK 222584, a specific vascular endothelial growth factor-receptor tyrosine kinase inhibitor, affects the anatomy of the tumor vascular bed and the functional vascular properties as detected by dynamic enhanced magnetic resonance imaging. Cancer Res 2002;62:4015–22
    Abstract/FREE Full Text
  28. 28.↵
    1. Badruddoja MA,
    2. Krouwer HG,
    3. Rand SD,
    4. et al
    . Antiangiogenic effects of dexamethasone in 9L gliosarcoma assessed by MRI cerebral blood volume maps. Neuro Oncol 2003;5:235–43
    Abstract/FREE Full Text
  29. 29.↵
    1. Doblas S,
    2. He T,
    3. Saunders D,
    4. et al
    . Glioma morphology and tumor-induced vascular alterations revealed in seven rodent glioma models by in vivo magnetic resonance imaging and angiography. J Magn Reson Imaging 2010;32:267–75
    CrossRefPubMed
  30. 30.↵
    1. Sorensen AG
    . Perfusion MR imaging: moving forward. Radiology 2008;249:416–17
    CrossRefPubMed
  31. 31.↵
    1. Hu LS,
    2. Baxter LC,
    3. Pinnaduwage DS,
    4. et al
    . Optimized preload leakage-correction methods to improve the diagnostic accuracy of dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging in posttreatment gliomas. AJNR Am J Neuroradiol 2010;31:40–48
    Abstract/FREE Full Text
  32. 32.↵
    1. Paulson ES,
    2. Schmainda KM
    . Comparison of dynamic susceptibility-weighted contrast-enhanced MR methods: recommendations for measuring relative cerebral blood volume in brain tumors. Radiology 2008;249:601–13
    CrossRefPubMedWeb of Science
  33. 33.↵
    1. Manka C,
    2. Traber F,
    3. Gleseke J,
    4. et al
    . Three-dimensional dynamic susceptibility weighted perfusion MR imaging at 3.0 T: feasibility and contrast agent dose. Radiology 2005;234:869–77
    CrossRefPubMedWeb of Science
  34. 34.↵
    1. Hu LS,
    2. Baxter LC,
    3. Smith KA,
    4. et al
    . Relative cerebral blood volume values to differentiate high-grade glioma recurrence from posttreatment radiation effect: direct correlation between image-guided tissue histopathology and localized dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging measurements. AJNR Am J Neuroradiol 2009;30:552–58
    Abstract/FREE Full Text
  35. 35.↵
    1. Stadlbauer A,
    2. Ganslandt O,
    3. Buslei R,
    4. et al
    . Gliomas: histopathologic evaluation of changes in directionality and magnitude of water diffusion at diffusion-tensor MR imaging. Radiology 2006;240:803–10
    CrossRefPubMedWeb of Science
  36. 36.↵
    1. Sadeghi N,
    2. Salmon I,
    3. Decaestecker C,
    4. et al
    . Stereotactic comparison among cerebral blood volume, methionine uptake, and histopathology in brain glioma. AJNR Am J Neuroradiol 2007;28:455–61
    Abstract/FREE Full Text
  37. 37.↵
    1. Louis DN,
    2. Ohgaki H,
    3. Wiestler OD,
    4. et al
    ., eds. WHO classification of tumours of the central nervous system. Lyon, France: IARC; 2002
  38. 38.↵
    1. Haris M,
    2. Husain N,
    3. Singh A,
    4. et al
    . Dynamic contrast-enhanced derived cerebral blood volume correlates better with leak correction than with no correction for vascular endothelial growth factor, microvascular density, and grading of astrocytoma. J Comput Assist Tomogr 2008;32:955–65
    CrossRefPubMed
  39. 39.↵
    1. Winkler F,
    2. Kozin SV,
    3. Tong RT,
    4. et al
    . Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer Cell 2004;6:553–63
    CrossRefPubMedWeb of Science
  40. 40.↵
    1. Weibel ER
    . Estimation of Basic Stereologic Parameters: Theoretical Foundations of Stereology. Vol. 2. London, UK: Academic Press; 1980
  41. 41.↵
    1. Liao W,
    2. Liu Y,
    3. Wang X,
    4. et al
    . Differentiation of primary central nervous system lymphoma and high-grade glioma with dynamic susceptibility contrast-enhanced perfusion magnetic resonance imaging. Acta Radiol 2009;50:217–25
    Abstract/FREE Full Text
  42. 42.↵
    1. Bisdas S,
    2. Kirkpatrick M,
    3. Giglio P,
    4. et al
    . Cerebral blood volume measurements by perfusion-weighted MR imaging in gliomas: ready for prime time in predicting short-term outcome and recurrent disease? AJNR Am J Neuroradiol 2009;30:681–88
    Abstract/FREE Full Text
  43. 43.↵
    1. Hirai T,
    2. Murakami R,
    3. Nakamura H,
    4. et al
    . Prognostic value of perfusion MR imaging of high-grade astrocytomas: long-term follow-up study. AJNR Am J Neuroradiol 2008;29:1505–10
    Abstract/FREE Full Text
  44. 44.↵
    1. Jackson RJ,
    2. Fuller GN,
    3. Abi-Said D,
    4. et al
    . Limitations of stereotactic biopsy in the initial management of gliomas. Neuro Oncol 2001;3:193–200
    Abstract/FREE Full Text
  45. 45.↵
    1. Young GS,
    2. Setayesh K
    . Spin-echo echo-planar perfusion MR imaging in the differential diagnosis of solitary enhancing brain lesions: distinguishing solitary metastases from primary glioma. AJNR Am J Neuroradiol 2009;30:575–77
    Abstract/FREE Full Text
  46. 46.↵
    1. Schmainda KM,
    2. Rand SD,
    3. Joseph AM,
    4. et al
    . Characterization of a first-pass gradient-echo spin-echo method to predict brain tumor grade and angiogenesis. AJNR Am J Neuroradiol 2004;25:1524–32
    Abstract/FREE Full Text
  47. 47.↵
    1. Kassner A,
    2. Annesley DJ,
    3. Zhu XP,
    4. et al
    . Abnormalities of the contrast re-circulation phase in cerebral tumors demonstrated using dynamic susceptibility contrast-enhanced imaging: a possible marker of vascular tortuosity. J Magn Reson Imaging 2000;11:103–13
    CrossRefPubMed
  48. 48.↵
    1. Emblem KE,
    2. Nedregaard B,
    3. Nome T,
    4. et al
    . Glioma grading by using histogram analysis of blood volume heterogeneity from MR-derived cerebral blood volume maps. Radiology 2008;247:808–17
    CrossRefPubMedWeb of Science
  49. 49.↵
    1. Gijtenbeek JM,
    2. Wesseling P,
    3. Maass C,
    4. et al
    . Three-dimensional reconstruction of tumor microvasculature: simultaneous visualization of multiple components in paraffin-embedded tissue. Angiogenesis 2005;8:297–305
    CrossRefPubMed
  50. 50.↵
    1. Rowley HA,
    2. Scialfa G,
    3. Gao PY,
    4. et al
    . Contrast-enhanced MR imaging of brain lesions: a large-scale intraindividual crossover comparison of gadobenate dimeglumine versus gadodiamide. AJNR Am J Neuroradiol 2008;29:1684–91
    Abstract/FREE Full Text
  51. 51.↵
    1. Poetker DM,
    2. Jursinic PA,
    3. Runge-Samuelson CL,
    4. et al
    . Distortion of magnetic resonance images used in gamma knife radiosurgery treatment planning: implications for acoustic neuroma outcomes. Otol Neurotol 2005;26:1220–28
    CrossRefPubMed
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 33 (1)
American Journal of Neuroradiology
Vol. 33, Issue 1
1 Jan 2012
  • Table of Contents
  • Index by author
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Correlations between Perfusion MR Imaging Cerebral Blood Volume, Microvessel Quantification, and Clinical Outcome Using Stereotactic Analysis in Recurrent High-Grade Glioma
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
L.S. Hu, J.M. Eschbacher, A.C. Dueck, J.E. Heiserman, S. Liu, J.P. Karis, K.A. Smith, W.R. Shapiro, D.S. Pinnaduwage, S.W. Coons, P. Nakaji, J. Debbins, B.G. Feuerstein, L.C. Baxter
Correlations between Perfusion MR Imaging Cerebral Blood Volume, Microvessel Quantification, and Clinical Outcome Using Stereotactic Analysis in Recurrent High-Grade Glioma
American Journal of Neuroradiology Jan 2012, 33 (1) 69-76; DOI: 10.3174/ajnr.A2743

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Correlations between Perfusion MR Imaging Cerebral Blood Volume, Microvessel Quantification, and Clinical Outcome Using Stereotactic Analysis in Recurrent High-Grade Glioma
L.S. Hu, J.M. Eschbacher, A.C. Dueck, J.E. Heiserman, S. Liu, J.P. Karis, K.A. Smith, W.R. Shapiro, D.S. Pinnaduwage, S.W. Coons, P. Nakaji, J. Debbins, B.G. Feuerstein, L.C. Baxter
American Journal of Neuroradiology Jan 2012, 33 (1) 69-76; DOI: 10.3174/ajnr.A2743
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Conclusions
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Identification of a Single-Dose, Low-Flip-Angle-Based CBV Threshold for Fractional Tumor Burden Mapping in Recurrent Glioblastoma
  • Image-localized biopsy mapping of brain tumor heterogeneity: A single-center study protocol
  • Image-localized Biopsy Mapping of Brain Tumor Heterogeneity: A Single-Center Study Protocol
  • Voxelwise and Patientwise Correlation of 18F-FDOPA PET, Relative Cerebral Blood Volume, and Apparent Diffusion Coefficient in Treatment-Naive Diffuse Gliomas with Different Molecular Subtypes
  • Performance of Standardized Relative CBV for Quantifying Regional Histologic Tumor Burden in Recurrent High-Grade Glioma: Comparison against Normalized Relative CBV Using Image-Localized Stereotactic Biopsies
  • Reduction of intratumoral brain perfusion by noninvasive transcranial electrical stimulation
  • Moving Toward a Consensus DSC-MRI Protocol: Validation of a Low-Flip Angle Single-Dose Option as a Reference Standard for Brain Tumors
  • Accurate Patient-Specific Machine Learning Models of Glioblastoma Invasion Using Transfer Learning
  • Correlation of Tumor Immunohistochemistry with Dynamic Contrast-Enhanced and DSC-MRI Parameters in Patients with Gliomas
  • Comparison of the Effect of Vessel Size Imaging and Cerebral Blood Volume Derived from Perfusion MR Imaging on Glioma Grading
  • Impact of Software Modeling on the Accuracy of Perfusion MRI in Glioma
  • Repeatability of Standardized and Normalized Relative CBV in Patients with Newly Diagnosed Glioblastoma
  • Arterial Spin-Labeling Perfusion MRI Stratifies Progression-Free Survival and Correlates with Epidermal Growth Factor Receptor Status in Glioblastoma
  • Assessment of Angiographic Vascularity of Meningiomas with Dynamic Susceptibility Contrast-Enhanced Perfusion-Weighted Imaging and Diffusion Tensor Imaging
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • Enhanced Axonal Metabolism during Early Natalizumab Treatment in Relapsing-Remitting Multiple Sclerosis
  • SWI or T2*: Which MRI Sequence to Use in the Detection of Cerebral Microbleeds? The Karolinska Imaging Dementia Study
  • Progression of Microstructural Damage in Spinocerebellar Ataxia Type 2: A Longitudinal DTI Study
Show more Brain

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire