Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Research ArticleBrain
Open Access

Generation of Individualized Thalamus Target Maps by Using Statistical Shape Models and Thalamocortical Tractography

A. Jakab, R. Blanc, E.L. Berényi and G. Székely
American Journal of Neuroradiology December 2012, 33 (11) 2110-2116; DOI: https://doi.org/10.3174/ajnr.A3140
A. Jakab
aFrom the Computer Vision Laboratory (A.J., R.B., G.S.), Swiss Federal Institute of Technology, Zürich, Switzerland
bDepartment of Biomedical Laboratory and Imaging Science (A.J., E.L.B.), Faculty of Medicine, University of Debrecen Medical and Health Science Center, Debrecen, Hungary.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R. Blanc
aFrom the Computer Vision Laboratory (A.J., R.B., G.S.), Swiss Federal Institute of Technology, Zürich, Switzerland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
E.L. Berényi
bDepartment of Biomedical Laboratory and Imaging Science (A.J., E.L.B.), Faculty of Medicine, University of Debrecen Medical and Health Science Center, Debrecen, Hungary.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
G. Székely
aFrom the Computer Vision Laboratory (A.J., R.B., G.S.), Swiss Federal Institute of Technology, Zürich, Switzerland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Duncan GH,
    2. Bushnell MC,
    3. Marchand S
    . Deep brain stimulation: a review of basic research and clinical studies. Pain 1991; 45: 49– 59
    CrossRefPubMedWeb of Science
  2. 2.↵
    1. Eskandar EN,
    2. Cosgrove RG,
    3. Shinobu LA
    . Surgical treatment of Parkinson disease. J Am Med 2001; 286: 3056– 59
  3. 3.↵
    1. Lorzano A,
    2. Gildenberg P
    1. Jeanmonod D,
    2. Morel A
    . The central lateral thalamotomy for neuropathic pain. In: Lorzano A, Gildenberg P eds. Textbook of Stereotactic and Functional Neurosurgery. Berlin, Germany: Springer-Verlag; 2009: 123: 2081– 96
  4. 4.↵
    1. Schaltenbrand G,
    2. Wahren W
    . Atlas for Stereotaxy of the Human Brain. Stuttgart, Germany: Thieme; 1977
  5. 5.↵
    1. Nowinski WL,
    2. Yang GL,
    3. Yeo TT
    . Computer aided stereotactic functional neurosurgery enhanced by the use of the multiple brain atlas database. IEEE Trans Med Imaging 2000; 19: 62– 69
    CrossRefPubMed
  6. 6.↵
    1. Lemaire J,
    2. Coste J,
    3. Ouchchane L,
    4. et al
    . Brain mapping in stereotactic surgery: a brief overview from the probabilistic targeting to the patient-based anatomic mapping. Neuroimage 2007; 37: S109– 15
    CrossRefPubMed
  7. 7.↵
    1. Morel A
    . Stereotactic Atlas of the Human Thalamus and Basal Ganglia. New York: Informa Healthcare USA; 2007
  8. 8.↵
    1. Nowinski WL
    . Towards construction of an ideal stereotactic brain atlas. Acta Neurochir 2008; 150: 1– 14
    CrossRefPubMed
  9. 9.↵
    1. Niemann K,
    2. Mennicken VR,
    3. Jeanmonod D,
    4. et al
    . The Morel Stereotactic Atlas of the Human Thalamus: atlas-to-MR registration of internally consistent canonical model. Neuroimage 2000; 12: 601– 16
    CrossRefPubMedWeb of Science
  10. 10.↵
    1. Deoni SC,
    2. Peters TM,
    3. Rutt BK
    . High-resolution T1 and T2 mapping of the brain in a clinically acceptable time with DESPOT1 and DESPOT2. Magn Reson Med 2005; 53: 237– 41
    CrossRefPubMedWeb of Science
  11. 11.↵
    1. Gringel T,
    2. Schulz-Schaeffer W,
    3. Elolf E,
    4. et al
    . Optimized high-resolution mapping of magnetization transfer (MT) at 3 Tesla for direct visualization of substructures of the human thalamus in clinically feasible measurement time. J Magn Reson Imaging 2009; 29: 1285– 92
    CrossRefPubMed
  12. 12.↵
    1. Traynor CR,
    2. Barker GJ,
    3. Crum WR,
    4. et al
    . Segmentation of the thalamus in MRI based on T1 and T2. Neuroimage 2011; 56: 939– 50
    CrossRefPubMed
  13. 13.↵
    1. Basser PJ,
    2. Pierpaoli C
    . Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J Magn Reson B 1996; 111: 209– 19
    CrossRefPubMedWeb of Science
  14. 14.↵
    1. Behrens TE,
    2. Woolrich MW,
    3. Jenkinson M,
    4. et al
    . Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magn Reson Med 2003; 50: 1077– 88
    CrossRefPubMedWeb of Science
  15. 15.↵
    1. Behrens TE,
    2. Berg HJ,
    3. Jbabdi S,
    4. et al
    . Probabilistic diffusion tractography with multiple fibre orientations: what can we gain? Neuroimage 2007; 34: 144– 55
    CrossRefPubMedWeb of Science
  16. 16.↵
    1. Draganski B,
    2. Kherif F,
    3. Kloppel S,
    4. et al
    . Evidence for segregated and integrative connectivity patterns in the human basal ganglia. J Neurosci 2008; 28: 7143– 52
    Abstract/FREE Full Text
  17. 17.↵
    1. Zhang D,
    2. Snyder AZ,
    3. Shimony JS,
    4. et al
    . Noninvasive functional and structural connectivity mapping of the human thalamocortical system. Cereb Cortex 2010; 20: 1187– 94
    Abstract/FREE Full Text
  18. 18.↵
    1. Behrens TE,
    2. Johansen-Berg H,
    3. Woolrich MW,
    4. et al
    . Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. Nat Neurosci 2003; 6: 750– 57
    CrossRefPubMedWeb of Science
  19. 19.↵
    1. Johansen-Berg H,
    2. Behrens TE,
    3. Sillery E,
    4. et al
    . Functional–anatomical validation and individual variation of diffusion tractography-based segmentation of the human thalamus. Cerebral Cortex 2005; 15: 31– 39
    Abstract/FREE Full Text
  20. 20.↵
    1. Klein JC,
    2. Rushworth MFS,
    3. Behrens TE,
    4. et al
    . Topography of connections between human prefrontal cortex and mediodorsal thalamus studied with diffusion tractography. Neuroimage 2010; 51: 555– 64
    CrossRefPubMedWeb of Science
  21. 21.↵
    1. Traynor C,
    2. Heckemann RA,
    3. Hammers A,
    4. et al
    . Reproducibility of thalamic segmentation based on probabilistic tractography. Neuroimage 2010; 52: 69– 85
    CrossRefPubMed
  22. 22.↵
    1. Wang YM,
    2. Staib LH
    . Elastic model based non-rigid registration incorporating statistical shape information. Medical Image Computing and Computer-Assisted Intervention: Lecture Notes in Computer Science 1998; 1496: 1162– 73
  23. 23.↵
    1. Cootes TF,
    2. Taylor CJ,
    3. Cooper DH,
    4. et al
    . Active shape models: their training and application. Computer Vision and Image Understanding 1995; 61: 38– 59
    CrossRefWeb of Science
  24. 24.↵
    1. Rao A,
    2. Aljabar P,
    3. Rueckert D
    . Hierarchical statistical shape analysis and prediction of sub-cortical brain structures. Med Image Anal 2008; 12: 55– 68
    CrossRefPubMedWeb of Science
  25. 25.↵
    1. Heimann T,
    2. Meinzer HP
    . Statistical shape models for 3D medical image segmentation: A review. Med Image Anal 2009; 13: 543– 63
    CrossRefPubMedWeb of Science
  26. 26.↵
    1. Krauth A,
    2. Blanc R,
    3. Poveda A,
    4. et al
    . A mean three-dimensional atlas of the human thalamus: generation from multiple histological data. Neuroimage 2010; 49: 2053– 62
    CrossRefPubMed
  27. 27.↵
    1. Pieper S,
    2. Lorensen B,
    3. Schroeder W,
    4. et al
    . The NA-MIC Kit: ITK, VTK, pipelines, grids and 3D slicer as an open platform for the medical image computing community. In: Proceedings of the 3rd IEEE International Symposium on Biomedical Imaging: Macro to Nano, Arlington, Virginia. April 6–9, 2006
  28. 28.↵
    1. Smith SM,
    2. Jenkinson M,
    3. Woolrich MW,
    4. et al
    . Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 2004; 23: 208– 19
    CrossRef
  29. 29.↵
    1. Blanz V,
    2. Mehl A,
    3. Vetter T,
    4. et al
    . A statistical method for robust 3D surface reconstruction from sparse data. In: Proceedings of the Second International Symposium on 3D Data Processing, Visualization and Transmission. Thessaloniki, Greece. September 6-9, 2004
  30. 30.↵
    1. Besl P,
    2. McKay N
    . A method for registration of 3-D shapes. IEEE Trans Pattern Anal Mach Intell 1992; 14: 239– 56
    CrossRefWeb of Science
  31. 31.↵
    1. Aspert N
    . MESH: measuring errors between surfaces using the Hausdorff distance. In: Proceedings of the IEEE International Conference on Multimedia and Expo, Lusanne, Switzerland. August 26–29, 2002
  32. 32.↵
    1. D'Haese P,
    2. Cetinkaya E,
    3. Konrad PE,
    4. et al
    . Computer-aided placement of deep brain stimulators: from planning to intraoperative guidance. IEEE Trans Med Imaging 2005; 24: 1469– 78
    CrossRefPubMed
  33. 33.↵
    1. Castro FJ,
    2. Pollo C,
    3. Meuli R,
    4. et al
    . A cross validation study of deep brain stimulation targeting: from experts to atlas-based, segmentation-based and automatic registration algorithms. IEEE Trans Med Imaging 2006; 25: 1440– 50
    CrossRefPubMed
  34. 34.↵
    1. Chakravarty MM,
    2. Sadikot AF,
    3. Germann J,
    4. et al
    . Comparison of piece-wise linear, linear, and nonlinear atlas-to-patient warping techniques: analysis of the labeling of subcortical nuclei for functional neurosurgical applications. Hum Brain Mapp 2009; 30: 3574– 95
    CrossRefPubMedWeb of Science
  35. 35.↵
    1. Abosch A,
    2. Yacoub E,
    3. Ugurbil K,
    4. et al
    . An assessment of current brain targets for deep brain stimulation surgery with susceptibility-weighted imaging at 7 Tesla. Neurosurgery 2010; 67: 1745– 56
    CrossRefPubMedWeb of Science
  36. 36.↵
    1. Jones EG
    . Viewpoint: the core and matrix of thalamic organization. Neuroscience 1998; 85: 331– 45
    CrossRefPubMedWeb of Science
  37. 37.↵
    1. Devlin JT,
    2. Sillery EL,
    3. Hall DA,
    4. et al
    . Reliable identification of the auditory thalamus using multi-modal structural analyses. Neuroimage 2006; 30: 1112– 20
    CrossRefPubMedWeb of Science
  38. 38.↵
    1. Pouratian N,
    2. Zheng Z,
    3. Bari AA,
    4. et al
    . Multi-institutional evaluation of deep brain stimulation targeting using probabilistic connectivity-based thalamic segmentation. J Neurosurg 2011; 115: 995– 1004
    CrossRefPubMedWeb of Science
  39. 39.↵
    1. Owen SL,
    2. Heath J,
    3. Kringelbach M,
    4. et al
    . Pre-operative DTI and probabilistic tractography in four patients with deep brain stimulation for chronic pain. J Clin Neurosci 2008; 15: 801– 05
    CrossRefPubMed
  40. 40.↵
    1. Martin E,
    2. Jeanmonod D,
    3. Morel A,
    4. et al
    . High-intensity focused ultrasound for noninvasive functional neurosurgery. Ann Neurol 2009; 66: 858– 61
    CrossRefPubMed
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 33 (11)
American Journal of Neuroradiology
Vol. 33, Issue 11
1 Dec 2012
  • Table of Contents
  • Index by author
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Generation of Individualized Thalamus Target Maps by Using Statistical Shape Models and Thalamocortical Tractography
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
A. Jakab, R. Blanc, E.L. Berényi, G. Székely
Generation of Individualized Thalamus Target Maps by Using Statistical Shape Models and Thalamocortical Tractography
American Journal of Neuroradiology Dec 2012, 33 (11) 2110-2116; DOI: 10.3174/ajnr.A3140

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Generation of Individualized Thalamus Target Maps by Using Statistical Shape Models and Thalamocortical Tractography
A. Jakab, R. Blanc, E.L. Berényi, G. Székely
American Journal of Neuroradiology Dec 2012, 33 (11) 2110-2116; DOI: 10.3174/ajnr.A3140
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • Materials and Methods
    • Results
    • Discussion
    • Conclusions
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • A combined neuroanatomy, ex vivo imaging and immunohistochemistry defined MRI mask for the human paraventricular nucleus of the thalamus
  • Developmental trajectory of thalamus topography during the late preterm and perinatal period in normal development, after premature birth and in congenital heart defects
  • An Image Quality Transfer Technique for Localising Deep Brain Stimulation Targets
  • Robust thalamic nuclei segmentation from T1-weighted MRI using polynomial intensity transformation
  • Accurate Bayesian segmentation of thalamic nuclei using diffusion MRI and an improved histological atlas
  • Prior-guided Individualized Thalamic Parcellation based on Local Diffusion Characteristics using Deep Learning
  • Development of thalamus mediates paternal age effect on offspring reading: A preliminary investigation
  • The Brain Activation-based Sexual Image Classifier (BASIC): A sensitive and specific fMRI activity pattern for sexual image perception
  • Mental development is associated with cortical connectivity of the ventral and nonspecific thalamus of preterm newborns
  • Modulating the human functional connectome using deep brain stimulation
  • Pediatric postoperative cerebellar cognitive affective syndrome follows outflow pathway lesions
  • Lead-DBS v2: Towards a comprehensive pipeline for deep brain stimulation imaging
  • Toward defining deep brain stimulation targets in MNI space: A subcortical atlas based on multimodal MRI, histology and structural connectivity
  • The Human Retrosplenial Cortex and Thalamus Code Head Direction in a Global Reference Frame
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • Fast Contrast-Enhanced 4D MRA and 4D Flow MRI Using Constrained Reconstruction (HYPRFlow): Potential Applications for Brain Arteriovenous Malformations
  • Multimodal CT Provides Improved Performance for Lacunar Infarct Detection
  • Optimal MRI Sequence for Identifying Occlusion Location in Acute Stroke: Which Value of Time-Resolved Contrast-Enhanced MRA?
Show more Brain

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire