Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Getting new auth cookie, if you see this message a lot, tell someone!
Review ArticleReview Articles
Open Access

MR Imaging of Neoplastic Central Nervous System Lesions: Review and Recommendations for Current Practice

M. Essig, N. Anzalone, S.E. Combs, A. Dörfler, S.-K. Lee, P. Picozzi, À. Rovira, M. Weller and M. Law
American Journal of Neuroradiology May 2012, 33 (5) 803-817; DOI: https://doi.org/10.3174/ajnr.A2640
M. Essig
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
N. Anzalone
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S.E. Combs
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A. Dörfler
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S.-K. Lee
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P. Picozzi
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
À. Rovira
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M. Weller
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M. Law
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Essig M,
    2. Weber MA,
    3. Tengg-Kobligk H,
    4. et al
    . Contrast-enhanced magnetic resonance imaging of central nervous system tumors: agents, mechanisms, and applications. Top Magn Reson Imaging 2006;17:89–106
    CrossRefPubMed
  2. 2.↵
    1. Runge VM,
    2. Muroff LR,
    3. Wells JW
    . Principles of contrast enhancement in the evaluation of brain diseases: an overview. J Magn Reson Imaging 1997;7:5–13
    PubMed
  3. 3.↵
    1. Schellinger PD,
    2. Meinck HM,
    3. Thron A
    . Diagnostic accuracy of MRI compared to CCT in patients with brain metastases. J Neurooncol 1999;44:275–81
    CrossRefPubMed
  4. 4.↵
    1. Yuh WT,
    2. Tali ET,
    3. Nguyen HD,
    4. et al
    . The effect of contrast dose, imaging time, and lesion size in the MR detection of intracerebral metastasis. AJNR Am J Neuroradiol 1995;16:373–80
    Abstract/FREE Full Text
  5. 5.↵
    1. Runge VM,
    2. Muroff LR,
    3. Jinkins JR
    . Central nervous system: review of clinical use of contrast media. Top Magn Reson Imaging 2001;12:231–63
    CrossRefPubMed
  6. 6.↵
    1. Forsting M,
    2. Palkowitsch P
    . Prevalence of acute adverse reactions to gadobutrol: a highly concentrated macrocyclic gadolinium chelate—review of 14,299 patients from observational trials. Eur J Radiol 2010;74:e186–e192. Epub 2009 Jul 2
    CrossRefPubMed
  7. 7.↵
    1. Bleicher AG,
    2. Kanal E
    . Assessment of adverse reaction rates to a newly approved MRI contrast agent: review of 23,553 administrations of gadobenate dimeglumine. AJR Am J Roentgenol 2008;191:W307–11
    CrossRefPubMedWeb of Science
  8. 8.↵
    1. Herborn CU,
    2. Honold E,
    3. Wolf M,
    4. et al
    . Clinical safety and diagnostic value of the gadolinium chelate gadoterate meglumine (Gd-DOTA). Invest Radiol 2007;42:58–62
    CrossRefPubMed
  9. 9.↵
    1. Nelson KL,
    2. Gifford LM,
    3. Lauber-Huber C,
    4. et al
    . Clinical safety of gadopentetate dimeglumine. Radiology 1995;196:439–43
    PubMedWeb of Science
  10. 10.↵
    1. Engelhorn T,
    2. Doerfler A
    . High-molar contrast agents for CNS application. Imaging Decisions MRI 2008;11:26–32
    CrossRef
  11. 11.↵
    1. Cha S
    . Update on brain tumor imaging: from anatomy to physiology. AJNR Am J Neuroradiol 2006;27:475–87
    FREE Full Text
  12. 12.
    1. Field AS,
    2. Alexander AL,
    3. Wu YC,
    4. et al
    . Diffusion tensor eigenvector directional color imaging patterns in the evaluation of cerebral white matter tracts altered by tumor. J Magn Reson Imaging 2004;20:555–62
    CrossRefPubMed
  13. 13.
    1. Field AS,
    2. Alexander AL
    . Diffusion tensor imaging in cerebral tumor diagnosis and therapy. Top Magn Reson Imaging 2004;15:315–24
    CrossRefPubMed
  14. 14.↵
    1. Cha S,
    2. Yang L,
    3. Johnson G,
    4. et al
    . Comparison of microvascular permeability measurements, K(trans), determined with conventional steady-state T1-weighted and first-pass T2*-weighted MR imaging methods in gliomas and meningiomas. AJNR Am J Neuroradiol 2006;27:409–17
    Abstract/FREE Full Text
  15. 15.
    1. Cha S
    . Neuroimaging in neuro-oncology. Neurotherapeutics 2009;6:465–77
    CrossRefPubMedWeb of Science
  16. 16.
    1. Roberts HC,
    2. Pickering RM,
    3. Onslow E,
    4. et al
    . The effectiveness of implementing a care pathway for femoral neck fracture in older people: a prospective controlled before and after study. Age Ageing 2004;33:178–84
    Abstract/FREE Full Text
  17. 17.↵
    1. Cha S
    . Perfusion MR imaging: basic principles and clinical applications. Magn Reson Imaging Clin N Am 2003;11:403–13
    CrossRefPubMed
  18. 18.
    1. Jackson A,
    2. Jayson GC,
    3. Li KL,
    4. et al
    . Reproducibility of quantitative dynamic contrast-enhanced MRI in newly presenting glioma. Br J Radiol 2003;76:153–62
    Abstract/FREE Full Text
  19. 19.↵
    1. Lacerda S,
    2. Law M
    . Magnetic resonance perfusion and permeability imaging in brain tumors. Neuroimaging Clin N Am 2009;19:527–57
    CrossRefPubMedWeb of Science
  20. 20.↵
    1. Law M,
    2. Young RJ,
    3. Babb JS,
    4. et al
    . Gliomas: predicting time to progression or survival with cerebral blood volume measurements at dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. Radiology 2008;247:490–98
    CrossRefPubMedWeb of Science
  21. 21.
    1. Li KL,
    2. Zhu XP,
    3. Checkley DR,
    4. et al
    . Simultaneous mapping of blood volume and endothelial permeability surface area product in gliomas using iterative analysis of first-pass dynamic contrast enhanced MRI data. Br J Radiol 2003;76:39–50
    Abstract/FREE Full Text
  22. 22.
    1. Li KL,
    2. Zhu XP,
    3. Waterton J,
    4. et al
    . Improved 3D quantitative mapping of blood volume and endothelial permeability in brain tumors. J Magn Reson Imaging 2000;12:347–57
    CrossRefPubMed
  23. 23.
    1. Roberts HC,
    2. Roberts TP,
    3. Ley S,
    4. et al
    . Quantitative estimation of microvascular permeability in human brain tumors: correlation of dynamic Gd-DTPA-enhanced MR imaging with histopathologic grading. Acad Radiol 2002;9(suppl 1):S151–55
    CrossRefPubMed
  24. 24.↵
    1. Roberts HC,
    2. Roberts TP,
    3. Brasch RC,
    4. et al
    . Quantitative measurement of microvascular permeability in human brain tumors achieved using dynamic contrast-enhanced MR imaging: correlation with histologic grade. AJNR Am J Neuroradiol 2000;21:891–99
    Abstract/FREE Full Text
  25. 25.
    1. Desprechins B,
    2. Stadnik T,
    3. Koerts G,
    4. et al
    . Use of diffusion-weighted MR imaging in differential diagnosis between intracerebral necrotic tumors and cerebral abscesses. AJNR Am J Neuroradiol 1999;20:1252–57
    Abstract/FREE Full Text
  26. 26.
    1. Schaefer PW,
    2. Grant PE,
    3. Gonzalez RG
    . Diffusion-weighted MR imaging of the brain. Radiology 2000;217:331–45
    CrossRefPubMedWeb of Science
  27. 27.
    1. Barajas RF Jr.,
    2. Rubenstein JL,
    3. Chang JS,
    4. et al
    . Diffusion-weighted MR imaging derived apparent diffusion coefficient is predictive of clinical outcome in primary central nervous system lymphoma. AJNR Am J Neuroradiol 2010;31:60–66
    Abstract/FREE Full Text
  28. 28.
    1. Murakami R,
    2. Hirai T,
    3. Sugahara T,
    4. et al
    . Grading astrocytic tumors by using apparent diffusion coefficient parameters: superiority of a one- versus two-parameter pilot method. Radiology 2009;251:838–45
    CrossRefPubMedWeb of Science
  29. 29.↵
    1. Law M
    . MR spectroscopy of brain tumors. Top Magn Reson Imaging 2004;15:291–313
    CrossRefPubMed
  30. 30.
    1. Nelson SJ,
    2. Cha S
    . Imaging glioblastoma multiforme. Cancer J 2003;9:134–45
    CrossRefPubMedWeb of Science
  31. 31.
    1. Nelson SJ
    . Analysis of volume MRI and MR spectroscopic imaging data for the evaluation of patients with brain tumors. Magn Reson Med 2001;46:228–39
    CrossRefPubMedWeb of Science
  32. 32.
    1. Nelson SJ
    . Multivoxel magnetic resonance spectroscopy of brain tumors. Mol Cancer Ther 2003;2:497–507
    Abstract/FREE Full Text
  33. 33.
    1. Tedeschi G,
    2. Lundbom N,
    3. Raman R,
    4. et al
    . Increased choline signal coinciding with malignant degeneration of cerebral gliomas: a serial proton magnetic resonance spectroscopy imaging study. J Neurosurg 1997;87:516–24
    PubMedWeb of Science
  34. 34.
    1. Petrella JR,
    2. Provenzale JM
    . MR perfusion imaging of the brain: techniques and applications. AJR Am J Roentgenol 2000;175:207–19
    CrossRefPubMedWeb of Science
  35. 35.↵
    1. Chen W
    . Clinical applications of PET in brain tumors. J Nucl Med 2007;48:1468–81
    Abstract/FREE Full Text
  36. 36.
    1. Lin FH,
    2. Witzel T,
    3. Mandeville JB,
    4. et al
    . Event-related single-shot volumetric functional magnetic resonance inverse imaging of visual processing. Neuroimage 2008;42:230–47
    CrossRefPubMed
  37. 37.↵
    1. Iannucci G,
    2. Mascalchi M,
    3. Salvi F,
    4. et al
    . Vanishing Balò-like lesions in multiple sclerosis. J Neurol Neurosurg Psychiatry 2000;69:399–400
    FREE Full Text
  38. 38.↵
    1. Butteriss DJ,
    2. Ismail A,
    3. Ellison DW,
    4. et al
    . Use of serial proton magnetic resonance spectroscopy to differentiate low grade glioma from tumefactive plaque in a patient with multiple sclerosis. Br J Radiol 2003;76:662–65
    Abstract/FREE Full Text
  39. 39.↵
    1. Law M,
    2. Meltzer DE,
    3. Cha S
    . Spectroscopic magnetic resonance imaging of a tumefactive demyelinating lesion. Neuroradiology 2002;44:986–89
    CrossRefPubMedWeb of Science
  40. 40.↵
    1. De Stefano N,
    2. Caramanos Z,
    3. Preul MC,
    4. et al
    . In vivo differentiation of astrocytic brain tumors and isolated demyelinating lesions of the type seen in multiple sclerosis using 1H magnetic resonance spectroscopic imaging. Ann Neurol 1998;44:273–78
    CrossRefPubMedWeb of Science
  41. 41.↵
    1. Saindane AM,
    2. Cha S,
    3. Law M,
    4. et al
    . Proton MR spectroscopy of tumefactive demyelinating lesions. AJNR Am J Neuroradiol 2002;23:1378–86
    Abstract/FREE Full Text
  42. 42.↵
    1. Cianfoni A,
    2. Niku S,
    3. Imbesi SG
    . Metabolite findings in tumefactive demyelinating lesions utilizing short echo time proton magnetic resonance spectroscopy. AJNR Am J Neuroradiol 2007;28:272–77
    Abstract/FREE Full Text
  43. 43.↵
    1. Majos C,
    2. Aguilera C,
    3. Alonso J,
    4. et al
    . Proton MR spectroscopy improves discrimination between tumor and pseudotumoral lesion in solid brain masses. AJNR Am J Neuroradiol 2009;30:544–51
    Abstract/FREE Full Text
  44. 44.↵
    1. Cha S,
    2. Pierce S,
    3. Knopp EA,
    4. et al
    . Dynamic contrast-enhanced T2*-weighted MR imaging of tumefactive demyelinating lesions. AJNR Am J Neuroradiol 2001;22:1109–16
    Abstract/FREE Full Text
  45. 45.↵
    1. Law M,
    2. Cha S,
    3. Knopp EA,
    4. et al
    . High-grade gliomas and solitary metastases: differentiation by using perfusion and proton spectroscopic MR imaging. Radiology 2002;222:715–21
    PubMedWeb of Science
  46. 46.↵
    1. Louis DN,
    2. Ohgaki H,
    3. Wiestler OD,
    4. et al
    . The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 2007;114:97–109. Epub 2007 Jul 6
    CrossRefPubMedWeb of Science
  47. 47.↵
    1. Dean BL,
    2. Drayer BP,
    3. Bird CR,
    4. et al
    . Gliomas: classification with MR imaging. Radiology 1990;174:411–15
    CrossRefPubMedWeb of Science
  48. 48.↵
    1. Law M,
    2. Yang S,
    3. Wang H,
    4. et al
    . Glioma grading: sensitivity, specificity, and predictive values of perfusion MR imaging and proton MR spectroscopic imaging compared with conventional MR imaging. AJNR Am J Neuroradiol 2003;24:1989–98
    Abstract/FREE Full Text
  49. 49.↵
    1. Law M,
    2. Wang EY,
    3. Oh S,
    4. et al
    . Dynamic susceptibility contrast perfusion MR imaging of low-grade gliomas: a follow-up study of lesions with low vs high relative cerebral blood volume. In: Proceedings of the 42nd Annual Meeting of the American Society of Neuroradiology, Seattle; June 5–11, 2004
  50. 50.↵
    1. Kelly PJ
    . Volumetric stereotactic surgical resection of intra-axial brain mass lesions. Mayo Clin Proc 1988;63:1186–98
    PubMed
  51. 51.↵
    1. Kelly PJ
    . Stereotactic imaging, surgical planning and computer-assisted resection of intracranial lesions: methods and results. Adv Tech Stand Neurosurg 1990;17:77–118
    CrossRefPubMed
  52. 52.↵
    1. Kelly PJ
    . Computed tomography and histologic limits in glial neoplasms: tumor types and selection for volumetric resection. Surg Neurol 1993;39:458–65
    CrossRefPubMed
  53. 53.↵
    1. Weber MA,
    2. Henze M,
    3. Tüttenberg J,
    4. et al
    . Biopsy targeting gliomas: do functional imaging techniques identify similar target areas? Invest Radiol 2010;45:755–68
    CrossRefPubMed
  54. 54.↵
    1. Yu CS,
    2. Li KC,
    3. Xuan Y,
    4. et al
    . Diffusion tensor tractography in patients with cerebral tumors: a helpful technique for neurosurgical planning and postoperative assessment. Eur J Radiol 2005;56:197–204
    CrossRefPubMed
  55. 55.↵
    1. Law M
    . Neurological complications. Cancer Imaging 2009;9(spec no A):S71–74
    CrossRefPubMed
  56. 56.↵
    1. Stummer W,
    2. Pichlmeier U,
    3. Meinel T,
    4. et al
    . Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol 2006;7:392–401
    CrossRefPubMedWeb of Science
  57. 57.↵
    1. Wick W,
    2. Hartmann C,
    3. Engel C,
    4. et al
    . NOA-04 randomized phase III trial of sequential radiochemotherapy of anaplastic glioma with procarbazine, lomustine, and vincristine or temozolomide. J Clin Oncol 2009;27:5874–80. Epub 2009 Nov 9
    Abstract/FREE Full Text
  58. 58.↵
    1. Shaw EG,
    2. Tatter SB,
    3. Lesser GJ,
    4. et al
    . Current controversies in the radiotherapeutic management of adult low-grade glioma. Semin Oncol 2004;31:653–58
    CrossRefPubMed
  59. 59.↵
    1. Shaw EG,
    2. Wisoff JH
    . Prospective clinical trials of intracranial low-grade glioma in adults and children. Neuro Oncol 2003;5:153–60
    Abstract/FREE Full Text
  60. 60.↵
    1. Chan MD,
    2. Tatter SB,
    3. Lesser G,
    4. et al
    . Radiation oncology in brain tumors: current approaches and clinical trials in progress. Neuroimaging Clin N Am 2010;20:401–08
    CrossRefPubMed
  61. 61.↵
    1. Combs SE
    . Radiation therapy. Recent Results Cancer Res 2009;171:125–40
    CrossRefPubMed
  62. 62.↵
    1. Stupp R,
    2. Hegi ME,
    3. Mason WP,
    4. et al
    . Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 2009;10:459–66. Epub 2009 Mar 9
    CrossRefPubMedWeb of Science
  63. 63.↵
    1. Pirzkall A,
    2. McKnight TR,
    3. Graves EE,
    4. et al
    . MR-spectroscopy guided target delineation for high-grade gliomas. Int J Radiat Oncol Biol Phys 2001;50:915–28
    CrossRefPubMedWeb of Science
  64. 64.↵
    1. Stall B,
    2. Zach L,
    3. Ning H,
    4. et al
    . Comparison of T2 and FLAIR imaging for target delineation in high grade gliomas. Radiat Oncol 2010;5:5
  65. 65.↵
    1. Jain R,
    2. Gutierrez J,
    3. Narang J,
    4. et al
    . In vivo correlation of tumor blood volume and permeability with histologic and molecular angiogenic markers in gliomas. AJNR Am J Neuroradiol 2010;32:388–94. Epub 2010 Nov 11
    PubMed
  66. 66.↵
    1. Macdonald DR,
    2. Cascino TL,
    3. Schold SC Jr.,
    4. et al
    . Response criteria for phase II studies of supratentorial malignant glioma. J Clin Oncol 1990;8:1277–80
    Abstract
  67. 67.↵
    1. Wen PY,
    2. Macdonald DR,
    3. Reardon DA,
    4. et al
    . Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol 2010;28:1963–72
    Abstract/FREE Full Text
  68. 68.↵
    1. van den Bent MJ,
    2. Vogelbaum MA,
    3. Wen PY,
    4. et al
    . End point assessment in gliomas: novel treatments limit usefulness of classical Macdonald's criteria. J Clin Oncol 2009;27:2905–08
    FREE Full Text
  69. 69.↵
    1. Clarke JL,
    2. Chang S
    . Pseudoprogression and pseudoresponse: challenges in brain tumor imaging. Curr Neurol Neurosci Rep 2009;9:241–46
    CrossRefPubMedWeb of Science
  70. 70.↵
    1. Brandes AA,
    2. Tosoni A,
    3. Spagnolli F,
    4. et al
    . Disease progression or pseudoprogression after concomitant radiochemotherapy treatment: pitfalls in neurooncology. Neuro Oncol 2008;10:361–67. Epub 2008 Apr 9
    Abstract/FREE Full Text
  71. 71.↵
    1. Brandsma D,
    2. Stalpers L,
    3. Taal W,
    4. et al
    . Clinical features, mechanisms, and management of pseudoprogression in malignant gliomas. Lancet Oncol 2008;9:453–61
    CrossRefPubMedWeb of Science
  72. 72.↵
    1. Law M,
    2. Lacerda S,
    3. Fatterpekar G,
    4. et al
    . Characterization of true disease progression versus pseudoprogression after concomitant radiochemotherapy treatment using perfusion, permeability, and MR spectroscopy in high grade gliomas. In: Proceedings of the 47th Annual Meeting of the Radiological Society of North America, Chicago, Illinois; November 29-December 4, 2009
  73. 73.↵
    RTOG Study Chairs (Coordinating Group). Phase III double-blind placebo-controlled trial of conventional concurrent chemoradiation and adjuvant temozolomide plus bevacizumab versus conventional concurrent chemoradiation and adjuvant temozolomide in patients with newly diagnosed glioblastoma. ACRIN: American College of Radiology Imaging Network. 2009. http://www.acrin.org/PROTOCOLSUMMARYTABLE/PROTOCOL6686.aspx. Accessed January 14, 2011
  74. 74.
    1. Stuckey SL,
    2. Goh TD,
    3. Heffernan T,
    4. et al
    . Hyperintensity in the subarachnoid space on FLAIR MRI. AJR Am J Roentgenol 2007;189:913–21
    CrossRefPubMed
  75. 75.↵
    1. Stankiewicz JM,
    2. Glanz BI,
    3. Healy BC,
    4. et al
    . Brain MRI lesion load at 1.5T and 3T versus clinical status in multiple sclerosis. J Neuroimaging 2011;21:e50–56
    CrossRefPubMedWeb of Science
  76. 76.↵
    1. Wattjes MP,
    2. Lutterbey GG,
    3. Harzheim M,
    4. et al
    . Higher sensitivity in the detection of inflammatory brain lesions in patients with clinically isolated syndromes suggestive of multiple sclerosis using high field MRI: an intraindividual comparison of 1.5 T with 3.0 T. Eur Radiol 2006;16:2067–73
    CrossRefPubMedWeb of Science
  77. 77.↵
    1. Attenberger UI,
    2. Runge VM,
    3. Morelli JN,
    4. et al
    . Evaluation of gadobutrol, a macrocyclic, nonionic gadolinium chelate in a brain glioma model: comparison with gadoterate meglumine and gadopentetate dimeglumine at 1.5 T, combined with an assessment of field strength dependence, specifically 1.5 versus 3 T. J Magn Reson Imaging 2010;31:549–55
    CrossRefPubMed
  78. 78.↵
    1. Biswas J,
    2. Nelson CB,
    3. Runge VM,
    4. et al
    . Brain tumor enhancement in magnetic resonance imaging: comparison of signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) at 1.5 versus 3 Tesla. Invest Radiol 2005;40:792–97
    CrossRefPubMed
  79. 79.↵
    1. Wintersperger BJ,
    2. Runge VM,
    3. Biswas J,
    4. et al
    . Brain tumor enhancement in MR imaging at 3 Tesla: comparison of SNR and CNR gain using TSE and GRE techniques. Invest Radiol 2007;42:558–63
    CrossRefPubMed
  80. 80.↵
    1. Wiggins GC,
    2. Triantafyllou C,
    3. Potthast A,
    4. et al
    . 32-channel 3 Tesla receive-only phased-array head coil with soccer-ball element geometry. Magn Reson Med 2006;56:216–23
    CrossRefPubMedWeb of Science
  81. 81.↵
    1. Wiggins GC,
    2. Polimeni JR,
    3. Potthast A,
    4. et al
    . 96-channel receive-only head coil for 3 Tesla: design optimization and evaluation. Magn Reson Med 2009;62:754–62
    CrossRefPubMedWeb of Science
  82. 82.↵
    1. Ba-Ssalamah A,
    2. Nobauer-Huhmann IM,
    3. Pinker K,
    4. et al
    . Effect of contrast dose and field strength in the magnetic resonance detection of brain metastases. Invest Radiol 2003;38:415–22
    CrossRefPubMedWeb of Science
  83. 83.↵
    1. Schneider G,
    2. Kirchin MA,
    3. Pirovano G,
    4. et al
    . Gadobenate dimeglumine-enhanced magnetic resonance imaging of intracranial metastases: effect of dose on lesion detection and delineation. J Magn Reson Imaging 2001;14:525–39
    CrossRefPubMed
  84. 84.↵
    1. Engelhorn T,
    2. Schwarz MA,
    3. Eyupoglu IY,
    4. et al
    . Dynamic contrast enhancement of experimental glioma an intra-individual comparative study to assess the optimal time delay. Acad Radiol 2010;17:188–93
    CrossRefPubMed
  85. 85.↵
    1. Frenzel T,
    2. Lengsfeld P,
    3. Schirmer H,
    4. et al
    . Stability of gadolinium-based magnetic resonance imaging contrast agents in human serum at 37 degrees C. Invest Radiol 2008;43:817–28
    CrossRefPubMedWeb of Science
  86. 86.↵
    1. Sieber MA,
    2. Lengsfeld P,
    3. Frenzel T,
    4. et al
    . Preclinical investigation to compare different gadolinium-based contrast agents regarding their propensity to release gadolinium in vivo and to trigger nephrogenic systemic fibrosis-like lesions. Eur Radiol 2008;18:2164–73
    CrossRefPubMed
  87. 87.↵
    1. Grobner T
    . Gadolinium: a specific trigger for the development of nephrogenic fibrosing dermopathy and nephrogenic systemic fibrosis? Nephrol Dial Transplant 2006;21:1104–08
    FREE Full Text
  88. 88.↵
    European Medicines Agency. European Medicines Agency makes recommendations to minimise risk of nephrogenic systemic fibrosis with gadolinium-containing contrast agents. http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/human/public_health_alerts/2010/09/human_pha_detail_000013.jsp&murl=menus/medicines/medicines.jsp&mid=&jsenabled=true. Accessed January 14, 2011
  89. 89.↵
    US Food and Drug Administration. FDA News Release. New warnings required on use of gadolinium-based contrast agents: enhanced screening recommended to detect kidney dysfunction. http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm225286.htm. Accessed January 14, 2011
  90. 90.↵
    1. Port M,
    2. Corot C,
    3. Violas X,
    4. et al
    . How to compare the efficiency of albumin-bound and nonalbumin-bound contrast agents in vivo: the concept of dynamic relaxivity. Invest Radiol 2005;40:565–73
    CrossRefPubMed
  91. 91.↵
    1. Giesel FL,
    2. Mehndiratta A,
    3. Risse F,
    4. et al
    . Intraindividual comparison between gadopentetate dimeglumine and gadobutrol for magnetic resonance perfusion in normal brain and intracranial tumors at 3 Tesla. Acta Radiol 2009;50:521–30
    Abstract/FREE Full Text
  92. 92.↵
    1. Rohrer M,
    2. Bauer H,
    3. Mintorovitch J,
    4. et al
    . Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths. Invest Radiol 2005;40:715–24
    CrossRefPubMedWeb of Science
  93. 93.↵
    1. Akeson P,
    2. Jonsson E,
    3. Haugen I,
    4. et al
    . Contrast-enhanced MRI of the central nervous system: comparison between gadodiamide injection and gadolinium-DTPA. Neuroradiology 1995;37:229–33
    PubMed
  94. 94.↵
    1. Anzalone N,
    2. Gerevini S,
    3. Scotti R,
    4. et al
    . Detection of cerebral metastases on magnetic resonance imaging: intraindividual comparison of gadobutrol with gadopentetate dimeglumine. Acta Radiol 2009;50:933–40
    Abstract/FREE Full Text
  95. 95.↵
    1. Essig M,
    2. Lodemann KP,
    3. Le Huu M,
    4. et al
    . Intraindividual comparison of gadobenate dimeglumine and gadobutrol for cerebral magnetic resonance perfusion imaging at 1.5 T. Invest Radiol 2006;41:256–63
    CrossRefPubMed
  96. 96.↵
    1. Greco A,
    2. Parker JR,
    3. Ratcliffe CG,
    4. et al
    . Phase III, randomized, double-blind, cross-over comparison of gadoteridol and gadopentetate dimeglumine in magnetic resonance imaging of patients with intracranial lesions. Australas Radiol 2001;45:457–63
    CrossRefPubMed
  97. 97.↵
    1. Grossman RI,
    2. Rubin DL,
    3. Hunter G,
    4. et al
    . Magnetic resonance imaging in patients with central nervous system pathology: a comparison of OptiMARK (Gd-DTPA-BMEA) and Magnevist (Gd-DTPA). Invest Radiol 2000;35:412–19
    CrossRefPubMed
  98. 98.↵
    1. Kim ES,
    2. Chang JH,
    3. Choi HS,
    4. et al
    . Diagnostic yield of double-dose gadobutrol in the detection of brain metastasis: intraindividual comparison with double-dose gadopentetate dimeglumine. AJNR Am J Neuroradiol 2010;31:1055–58
    Abstract/FREE Full Text
  99. 99.↵
    1. Kuhn MJ,
    2. Picozzi P,
    3. Maldjian JA,
    4. et al
    . Evaluation of intraaxial enhancing brain tumors on magnetic resonance imaging: intraindividual crossover comparison of gadobenate dimeglumine and gadopentetate dimeglumine for visualization and assessment, and implications for surgical intervention. J Neurosurg 2007;106:557–66
    CrossRefPubMed
  100. 100.↵
    1. Maravilla KR,
    2. Maldjian JA,
    3. Schmalfuss IM,
    4. et al
    . Contrast enhancement of central nervous system lesions: multicenter intraindividual crossover comparative study of two MR contrast agents. Radiology 2006;240:389–400
    CrossRefPubMed
  101. 101.↵
    1. Oudkerk M,
    2. Sijens PE,
    3. Van Beek EJ,
    4. et al
    . Safety and efficacy of Dotarem (Gd-DOTA) versus Magnevist (Gd-DTPA) in magnetic resonance imaging of the central nervous system. Invest Radiol 1995;30:75–78
    CrossRefPubMed
  102. 102.↵
    1. Rowley HA,
    2. Scialfa G,
    3. Gao PY,
    4. et al
    . Contrast-enhanced MR imaging of brain lesions: a large-scale intraindividual crossover comparison of gadobenate dimeglumine versus gadodiamide. AJNR Am J Neuroradiol 2008;29:1684–91
    Abstract/FREE Full Text
  103. 103.↵
    1. Rumboldt Z,
    2. Rowley HA,
    3. Steinberg F,
    4. et al
    . Multicenter, double-blind, randomized, intra-individual crossover comparison of gadobenate dimeglumine and gadopentetate dimeglumine in MRI of brain tumors at 3 Tesla. J Magn Reson Imaging 2009;29:760–67
    CrossRefPubMed
  104. 104.↵
    1. Valk J,
    2. Algra PR,
    3. Hazenberg CJ,
    4. et al
    . A double-blind, comparative study of gadodiamide injection and gadopentetate dimeglumine in MRI of the central nervous system. Neuroradiology 1993;35:173–77
    CrossRefPubMed
  105. 105.↵
    1. Anzalone N,
    2. Colosimo C,
    3. Scarabino T,
    4. et al
    . Cerebral neoplastic enhancing lesions: multicenter, randomized, crossover intraindividual comparison between gadobutrol (1.0M) and gadoterate meglumine (0.5M) at 0.1 mmol Gd/kg body weight in a clinical setting. Eur J Radiol In press.
  106. 106.↵
    1. Attenberger UI,
    2. Runge VM,
    3. Jackson CB,
    4. et al
    . Comparative evaluation of lesion enhancement using 1 M gadobutrol vs. 2 conventional gadolinium chelates, all at a dose of 0.1 mmol/kg, in a rat brain tumor model at 3 T. Invest Radiol 2009;44:251–56
    CrossRefPubMed
  107. 107.↵
    1. Le Duc G,
    2. Corde S,
    3. Charvet AM,
    4. et al
    . In vivo measurement of gadolinium concentration in a rat glioma model by monochromatic quantitative computed tomography: comparison between gadopentetate dimeglumine and gadobutrol. Invest Radiol 2004;39:385–93
    CrossRefPubMed
  108. 108.↵
    1. Tombach B,
    2. Benner T,
    3. Reimer P,
    4. et al
    . Do highly concentrated gadolinium chelates improve MR brain perfusion imaging? Intraindividually controlled randomized crossover concentration comparison study of 0.5 versus 1.0 mol/L gadobutrol. Radiology 2003;226:880–88
    PubMed
  109. 109.↵
    1. Akeson P,
    2. Larsson EM,
    3. Kristoffersen DT,
    4. et al
    . Brain metastases: comparison of gadodiamide injection-enhanced MR imaging at standard and high dose, contrast-enhanced CT and non-contrast-enhanced MR imaging. Acta Radiol 1995;36:300–06
    PubMedWeb of Science
  110. 110.↵
    1. Benner T,
    2. Reimer P,
    3. Erb G,
    4. et al
    . Cerebral MR perfusion imaging: first clinical application of a 1 M gadolinium chelate (Gadovist 1.0) in a double-blinded randomized dose-finding study. J Magn Reson Imaging 2000;12:371–80
    CrossRefPubMed
  111. 111.↵
    1. Filippi M,
    2. Rovaris M,
    3. Capra R,
    4. et al
    . A multi-centre longitudinal study comparing the sensitivity of monthly MRI after standard and triple dose gadolinium-DTPA for monitoring disease activity in multiple sclerosis: implications for phase II clinical trials. Brain 1998;121(pt 10):2011–20
    Abstract/FREE Full Text
  112. 112.↵
    1. Runge VM,
    2. Kirsch JE,
    3. Burke VJ,
    4. et al
    . High-dose gadoteridol in MR imaging of intracranial neoplasms. J Magn Reson Imaging 1992;2:9–18
    PubMedWeb of Science
  113. 113.↵
    1. Sze G,
    2. Johnson C,
    3. Kawamura Y,
    4. et al
    . Comparison of single- and triple-dose contrast material in the MR screening of brain metastases. AJNR Am J Neuroradiol 1998;19:821–28
    Abstract
  114. 114.↵
    1. Uysal E,
    2. Erturk SM,
    3. Yildirim H,
    4. et al
    . Sensitivity of immediate and delayed gadolinium-enhanced MRI after injection of 0.5 M and 1.0 M gadolinium chelates for detecting multiple sclerosis lesions. AJR Am J Roentgenol 2007;188:697–702
    CrossRefPubMed
  115. 115.↵
    1. van der Molen AJ,
    2. Bellin MF
    . Extracellular gadolinium-based contrast media: differences in diagnostic efficacy. Eur J Radiol 2008;66:168–74
    CrossRefPubMed
  116. 116.↵
    1. van Dijk P,
    2. Sijens PE,
    3. Schmitz PI,
    4. et al
    . Gd-enhanced MR imaging of brain metastases: contrast as a function of dose and lesion size. Magn Reson Imaging 1997;15:535–41
    CrossRefPubMed
  117. 117.↵
    1. Vogl TJ,
    2. Friebe CE,
    3. Balzer T,
    4. et al
    . Diagnosis of cerebral metastasis with standard dose gadobutrol vs. a high dose protocol: intraindividual evaluation of a phase II high dose study[in German]. Radiologe 1995;35:508–16
    PubMed
  118. 118.↵
    1. Wolansky LJ,
    2. Bardini JA,
    3. Cook SD,
    4. Z,
    5. et al
    . Triple-dose versus single-dose gadoteridol in multiple sclerosis patients. J Neuroimaging 1994;4:141–45
    PubMed
  119. 119.↵
    1. Yuh WT,
    2. Halloran JI,
    3. Mayr NA,
    4. et al
    . Dose of contrast material in the MR imaging evaluation of central nervous system tumors. J Magn Reson Imaging 1994;4:243–49
    PubMed
  120. 120.↵
    1. Anzalone N
    . Comparative studies of different gadolinium agents in brain tumors: differences between gadolinium chelates and their possible influence on imaging features. AJNR Am J Neuroradiol 2010;31:981–82
    FREE Full Text
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 33 (5)
American Journal of Neuroradiology
Vol. 33, Issue 5
1 May 2012
  • Table of Contents
  • Index by author
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
MR Imaging of Neoplastic Central Nervous System Lesions: Review and Recommendations for Current Practice
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
M. Essig, N. Anzalone, S.E. Combs, A. Dörfler, S.-K. Lee, P. Picozzi, À. Rovira, M. Weller, M. Law
MR Imaging of Neoplastic Central Nervous System Lesions: Review and Recommendations for Current Practice
American Journal of Neuroradiology May 2012, 33 (5) 803-817; DOI: 10.3174/ajnr.A2640

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
MR Imaging of Neoplastic Central Nervous System Lesions: Review and Recommendations for Current Practice
M. Essig, N. Anzalone, S.E. Combs, A. Dörfler, S.-K. Lee, P. Picozzi, À. Rovira, M. Weller, M. Law
American Journal of Neuroradiology May 2012, 33 (5) 803-817; DOI: 10.3174/ajnr.A2640
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • Applications of MR Imaging in Neoplastic CNS Lesions
    • Current Limitations of MR Imaging in Neoplastic CNS Lesions
    • Protocols and Techniques for MR Imaging of Neoplastic CNS Lesions
    • Summary of Expert Meeting Recommendations
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Preradiotherapy MR Imaging: A Prospective Pilot Study of the Usefulness of Performing an MR Examination Shortly before Radiation Therapy in Patients with Glioblastoma
  • Exploring the Biomechanical Properties of Brain Malignancies and Their Pathologic Determinants In Vivo with Magnetic Resonance Elastography
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • An Atlas of Neonatal Neurovascular Imaging Anatomy as Depicted with Microvascular Imaging: The Intracranial Arteries
  • An Atlas of Neonatal Neurovascular Imaging Anatomy as Depicted with Microvascular Imaging: The Intracranial Veins
  • Clinical Translation of Hyperpolarized 13C Metabolic Probes for Glioma Imaging
Show more Review Articles

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire