Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Research ArticleBrain

Explaining Clinical Effects of Deep Brain Stimulation through Simplified Target-Specific Modeling of the Volume of Activated Tissue

B. Mädler and V.A. Coenen
American Journal of Neuroradiology June 2012, 33 (6) 1072-1080; DOI: https://doi.org/10.3174/ajnr.A2906
B. Mädler
aFrom the Division of Stereotaxy and MR-Based Operative Techniques/Department of Neurosurgery, Bonn University Hospital, Bonn, Germany.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
V.A. Coenen
aFrom the Division of Stereotaxy and MR-Based Operative Techniques/Department of Neurosurgery, Bonn University Hospital, Bonn, Germany.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Sakas DES,
    2. Brian A
    , eds. Operative Neuromodulation: Neural Networks Surgery. New York: Springer-Verlag; 2007
  2. 2.↵
    1. Perlmutter JS,
    2. Mink JW
    . Deep brain stimulation. Annu Rev Neurosci 2006;29:229–57
    CrossRefPubMedWeb of Science
  3. 3.↵
    1. Coenen VA,
    2. Prescher A,
    3. Schmidt T,
    4. et al
    . What is dorso-lateral in the subthalamic nucleus (STN)? A topographic and anatomical consideration on the ambiguous description of today's primary target for deep brain stimulation (DBS) surgery. Acta Neurochir (Wien) 2008;150:1163–65
    CrossRefPubMed
  4. 4.↵
    1. Johnson MD,
    2. Miocinovic S,
    3. McIntyre CC,
    4. et al
    . Mechanisms and targets of deep brain stimulation in movement disorders. Neurotherapeutics 2008;5:294–308
    CrossRefPubMedWeb of Science
  5. 5.↵
    1. Gradinaru V,
    2. Mogri M,
    3. Thompson KR,
    4. et al
    . Optical deconstruction of parkinsonian neural circuitry. Science 2009;324:354–59
    Abstract/FREE Full Text
  6. 6.↵
    1. Coenen VA,
    2. Madler B,
    3. Schiffbauer H,
    4. et al
    . Individual fiber anatomy of the subthalamic region revealed with DTI: a concept to identify the DBS target for tremor suppression. Neurosurgery 2011;68:1069–75, discussion 1075–76
    PubMedWeb of Science
  7. 7.↵
    1. Burgel U,
    2. Madler B,
    3. Honey CR,
    4. et al
    . Fiber tracking with distinct software tools results in a clear diversity in anatomical fiber tract portrayal. Cen Eur Neurosurg 2009;70:27–35. Epub 2009 Feb 3
    CrossRefPubMed
  8. 8.↵
    1. Butson CR,
    2. Cooper SE,
    3. Henderson JM,
    4. et al
    . Probabilistic analysis of activation volumes generated during deep brain stimulation. Neuroimage 2011;54:2096–104
    CrossRefPubMedWeb of Science
  9. 9.↵
    1. Butson CR,
    2. Maks CB,
    3. McIntyre CC
    . Sources and effects of electrode impedance during deep brain stimulation. Clin Neurophysiol 2006;117:447–54
    CrossRefPubMedWeb of Science
  10. 10.↵
    1. McIntyre CC,
    2. Butson CR,
    3. Maks CB,
    4. et al
    . Optimizing deep brain stimulation parameter selection with detailed models of the electrode-tissue interface. Conf Proc IEEE Eng Med Biol Soc 2006;1:893–95
    PubMed
  11. 11.↵
    1. McIntyre CC,
    2. Frankenmolle AM,
    3. Wu J,
    4. et al
    . Customizing deep brain stimulation to the patient using computational models. Conf Proc IEEE Eng Med Biol Soc 2009;2009:4228–29
    PubMed
  12. 12.↵
    1. Miocinovic S,
    2. Lempka SF,
    3. Russo GS,
    4. et al
    . Experimental and theoretical characterization of the voltage distribution generated by deep brain stimulation. Exp Neurol 2009;216:166–76
    CrossRefPubMedWeb of Science
  13. 13.↵
    1. Cooper SE,
    2. Kuncel AM,
    3. Wolgamuth BR,
    4. et al
    . A model predicting optimal parameters for deep brain stimulation in essential tremor. J Clin Neurophysiol 2008;25:265–73
    CrossRefPubMedWeb of Science
  14. 14.↵
    1. Kuncel AM,
    2. Cooper SE,
    3. Grill WM
    . A method to estimate the spatial extent of activation in thalamic deep brain stimulation. Clin Neurophysiol 2008;119:2148–58
    CrossRefPubMed
  15. 15.↵
    1. Hemm S,
    2. Mennessier G,
    3. Vayssiere N,
    4. et al
    . Deep brain stimulation in movement disorders: stereotactic coregistration of two-dimensional electrical field modeling and magnetic resonance imaging. J Neurosurg 2005;103:949–55
    PubMed
  16. 16.↵
    1. Yousif N,
    2. Purswani N,
    3. Bayford R,
    4. et al
    . Evaluating the impact of the deep brain stimulation induced electric field on subthalamic neurons: a computational modelling study. J Neurosci Methods 2010;188:105–12
    CrossRefPubMed
  17. 17.↵
    1. Butson CR,
    2. McIntyre CC
    . Role of electrode design on the volume of tissue activated during deep brain stimulation. J Neural Eng 2006;3:1–8
    CrossRefPubMedWeb of Science
  18. 18.↵
    1. McIntyre CC,
    2. Mori S,
    3. Sherman DL,
    4. et al
    . Electric field and stimulating influence generated by deep brain stimulation of the subthalamic nucleus. Clin Neurophysiol 2004;115:589–95
    CrossRefPubMedWeb of Science
  19. 19.↵
    1. Ranck JJ
    . Which elements are excited in electrical stimulation of mammalian central nervous system: a review. Brain Res 1975;98:417–40
    CrossRefPubMedWeb of Science
  20. 20.↵
    1. Press WH,
    2. Flannery BP,
    3. Teukoslky SA,
    4. et al
    . Numerical Recipes. Cambridge, United Kingdom: Cambridge University Press; 1986
  21. 21.↵
    1. Coenen VA,
    2. Honey CR,
    3. Hurwitz T,
    4. et al
    . Medial forebrain bundle stimulation as a pathophysiological mechanism for hypomania in subthalamic nucleus deep brain stimulation for Parkinson's disease. Neurosurgery 2009;64:1106–14
    CrossRefPubMed
  22. 22.↵
    1. Coenen VA,
    2. Schlaepfer TE,
    3. Maedler B,
    4. et al
    . Cross-species affective functions of the medial forebrain bundle: Implications for the treatment of affective pain and depression in humans. Neurosci Biobehav Rev 2011;35:1971–81. Epub 2010 Dec 22
    CrossRefPubMed
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 33 (6)
American Journal of Neuroradiology
Vol. 33, Issue 6
1 Jun 2012
  • Table of Contents
  • Index by author
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Explaining Clinical Effects of Deep Brain Stimulation through Simplified Target-Specific Modeling of the Volume of Activated Tissue
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
B. Mädler, V.A. Coenen
Explaining Clinical Effects of Deep Brain Stimulation through Simplified Target-Specific Modeling of the Volume of Activated Tissue
American Journal of Neuroradiology Jun 2012, 33 (6) 1072-1080; DOI: 10.3174/ajnr.A2906

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Explaining Clinical Effects of Deep Brain Stimulation through Simplified Target-Specific Modeling of the Volume of Activated Tissue
B. Mädler, V.A. Coenen
American Journal of Neuroradiology Jun 2012, 33 (6) 1072-1080; DOI: 10.3174/ajnr.A2906
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • Materials and Methods
    • Results and Discussion
    • Conclusions
    • Footnotes
    • References
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • Evaluation of DBS computational modeling methodologies using in-vivo electrophysiology in Parkinsons disease
  • Local field potential signal transmission is correlated with the fractional anisotropy measured by diffusion tractography
  • Network fingerprint of stimulation-induced speech impairment in essential tremor
  • FastField: An Open-Source Toolbox for Efficient Approximation of Deep Brain Stimulation Electric Fields
  • Deep Brain Stimulation: Imaging on a group level
  • Modulating the human functional connectome using deep brain stimulation
  • Lead-DBS v2: Towards a comprehensive pipeline for deep brain stimulation imaging
  • Electrophysiologic Validation of Diffusion Tensor Imaging Tractography during Deep Brain Stimulation Surgery
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • Fast Contrast-Enhanced 4D MRA and 4D Flow MRI Using Constrained Reconstruction (HYPRFlow): Potential Applications for Brain Arteriovenous Malformations
  • Multimodal CT Provides Improved Performance for Lacunar Infarct Detection
  • Optimal MRI Sequence for Identifying Occlusion Location in Acute Stroke: Which Value of Time-Resolved Contrast-Enhanced MRA?
Show more Brain

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire