Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Research ArticleNeurointervention
Open Access

Cerebral Aneurysms Treated with Flow-Diverting Stents: Computational Models with Intravascular Blood Flow Measurements

M.R. Levitt, P.M. McGah, A. Aliseda, P.D. Mourad, J.D. Nerva, S.S. Vaidya, R.P. Morton, B.V. Ghodke and L.J. Kim
American Journal of Neuroradiology January 2014, 35 (1) 143-148; DOI: https://doi.org/10.3174/ajnr.A3624
M.R. Levitt
aFrom the Departments of Neurological Surgery (M.R.L., P.D.M., J.D.N., R.P.M., B.V.G., L.J.K.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P.M. McGah
bMechanical Engineering (P.M.M., A.A.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A. Aliseda
bMechanical Engineering (P.M.M., A.A.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P.D. Mourad
aFrom the Departments of Neurological Surgery (M.R.L., P.D.M., J.D.N., R.P.M., B.V.G., L.J.K.)
cApplied Physics Laboratory (P.D.M.)
dBioengineering (P.D.M.)
eRadiology (P.D.M., S.S.V., B.V.G., L.J.K.), University of Washington, Seattle.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J.D. Nerva
aFrom the Departments of Neurological Surgery (M.R.L., P.D.M., J.D.N., R.P.M., B.V.G., L.J.K.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S.S. Vaidya
eRadiology (P.D.M., S.S.V., B.V.G., L.J.K.), University of Washington, Seattle.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R.P. Morton
aFrom the Departments of Neurological Surgery (M.R.L., P.D.M., J.D.N., R.P.M., B.V.G., L.J.K.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
B.V. Ghodke
aFrom the Departments of Neurological Surgery (M.R.L., P.D.M., J.D.N., R.P.M., B.V.G., L.J.K.)
eRadiology (P.D.M., S.S.V., B.V.G., L.J.K.), University of Washington, Seattle.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
L.J. Kim
aFrom the Departments of Neurological Surgery (M.R.L., P.D.M., J.D.N., R.P.M., B.V.G., L.J.K.)
eRadiology (P.D.M., S.S.V., B.V.G., L.J.K.), University of Washington, Seattle.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

REFERENCES

  1. 1.↵
    1. Lylyk P,
    2. Miranda C,
    3. Ceratto R,
    4. et al
    . Curative endovascular reconstruction of cerebral aneurysms with the Pipeline embolization device: the Buenos Aires experience. Neurosurgery 2009;64:632–42
    CrossRefPubMedWeb of Science
  2. 2.↵
    1. Zhang Y,
    2. Chong W,
    3. Qian Y
    . Investigation of intracranial aneurysm hemodynamics following flow diverter stent treatment. Med Eng Phys 2013;35:608–15
    CrossRefPubMed
  3. 3.↵
    1. McAuliffe W,
    2. Wycoco V,
    3. Rice H,
    4. et al
    . Immediate and midterm results following treatment of unruptured intracranial aneurysms with the Pipeline embolization device. AJNR Am J Neuroradiol 2012;33:164–70
    Abstract/FREE Full Text
  4. 4.↵
    1. O'Kelly CJ,
    2. Spears J,
    3. Chow M,
    4. et al
    . Canadian experience with the Pipeline embolization device for repair of unruptured intracranial aneurysms. AJNR Am J Neuroradiol 2013;34:381–87
    Abstract/FREE Full Text
  5. 5.↵
    1. Piano M,
    2. Valvassori L,
    3. Quilici L,
    4. et al
    . Midterm and long-term follow-up of cerebral aneurysms treated with flow diverter devices: a single-center experience. J Neurosurg 2013;118:408–16
    CrossRefPubMedWeb of Science
  6. 6.↵
    1. Yu SC,
    2. Kwok CK,
    3. Cheng PW,
    4. et al
    . Intracranial aneurysms: midterm outcome of Pipeline embolization device: a prospective study in 143 patients with 178 aneurysms. Radiology 2012;265:893–901
    CrossRefPubMedWeb of Science
  7. 7.↵
    1. Hampton T,
    2. Walsh D,
    3. Tolias C,
    4. et al
    . Mural destabilization after aneurysm treatment with a flow-diverting device: a report of two cases. J Neurointerv Surg 2011;3:167–71
    Abstract/FREE Full Text
  8. 8.↵
    1. Velat GJ,
    2. Fargen KM,
    3. Lawson MF,
    4. et al
    . Delayed intraparenchymal hemorrhage following Pipeline embolization device treatment for a giant recanalized ophthalmic aneurysm. J Neurointerv Surg 2012;4:e24
    Abstract/FREE Full Text
  9. 9.↵
    1. Kulcsar Z,
    2. Houdart E,
    3. Bonafe A,
    4. et al
    . Intra-aneurysmal thrombosis as a possible cause of delayed aneurysm rupture after flow-diversion treatment. AJNR Am J Neuroradiol 2011;32:20–25
    Abstract/FREE Full Text
  10. 10.↵
    1. Shojima M,
    2. Oshima M,
    3. Takagi K,
    4. et al
    . Magnitude and role of wall shear stress on cerebral aneurysm: computational fluid dynamic study of 20 middle cerebral artery aneurysms. Stroke 2004;35:2500–05
    Abstract/FREE Full Text
  11. 11.↵
    1. Miura Y,
    2. Ishida F,
    3. Umeda Y,
    4. et al
    . Low wall shear stress is independently associated with the rupture status of middle cerebral artery aneurysms. Stroke 2013;44:519–21
    Abstract/FREE Full Text
  12. 12.↵
    1. Meng H,
    2. Wang Z,
    3. Hoi Y,
    4. et al
    . Complex hemodynamics at the apex of an arterial bifurcation induces vascular remodeling resembling cerebral aneurysm initiation. Stroke 2007;38:1924–31
    Abstract/FREE Full Text
  13. 13.↵
    1. Li C,
    2. Wang S,
    3. Chen J,
    4. et al
    . Influence of hemodynamics on recanalization of totally occluded intracranial aneurysms: a patient-specific computational fluid dynamic simulation study. J Neurosurg 2012;117:276–83
    CrossRefPubMed
  14. 14.↵
    1. Kulcsar Z,
    2. Augsburger L,
    3. Reymond P,
    4. et al
    . Flow diversion treatment: intra-aneurismal blood flow velocity and WSS reduction are parameters to predict aneurysm thrombosis. Acta Neurochir (Wien) 2012;154:1827–34
    CrossRefPubMedWeb of Science
  15. 15.↵
    1. Mut F,
    2. Cebral JR
    . Effects of flow-diverting device oversizing on hemodynamics alteration in cerebral aneurysms. AJNR Am J Neuroradiol 2012;33:2010–16
    Abstract/FREE Full Text
  16. 16.↵
    1. Cebral JR,
    2. Mut F,
    3. Raschi M,
    4. et al
    . Aneurysm rupture following treatment with flow-diverting stents: computational hemodynamics analysis of treatment. AJNR Am J Neuroradiol 2011;32:27–33
    Abstract/FREE Full Text
  17. 17.↵
    1. Hassan T,
    2. Ahmed YM,
    3. Hassan AA
    . The adverse effects of flow-diverter stent-like devices on the flow pattern of saccular intracranial aneurysm models: computational fluid dynamics study. Acta Neurochir (Wien) 2011;153:1633–40
    CrossRefPubMedWeb of Science
  18. 18.↵
    1. Venugopal P,
    2. Valentino D,
    3. Schmitt H,
    4. et al
    . Sensitivity of patient-specific numerical simulation of cerebral aneurysm hemodynamics to inflow boundary conditions. J Neurosurg 2007;106:1051–60
    CrossRefPubMed
  19. 19.↵
    1. Marzo A,
    2. Singh P,
    3. Larrabide I,
    4. et al
    . Computational hemodynamics in cerebral aneurysms: the effects of modeled versus measured boundary conditions. Ann Biomed Eng 2011;39:884–96
    CrossRefPubMed
  20. 20.↵
    1. Levitt MR,
    2. Cooke DL,
    3. Ghodke BV,
    4. et al
    . “Stent view” flat-detector CT and stent-assisted treatment strategies for complex intracranial aneurysms. World Neurosurg 2011;75:275–78
    CrossRefPubMed
  21. 21.↵
    1. Bach RG,
    2. Kern MJ
    . Practical coronary physiology: clinical application of the Doppler flow velocity guide wire. Cardiol Clin 1997;15:77–99
    CrossRefPubMed
  22. 22.↵
    1. Ferns SP,
    2. Schneiders JJ,
    3. Siebes M,
    4. et al
    . Intracranial blood-flow velocity and pressure measurements using an intra-arterial dual-sensor guidewire. AJNR Am J Neuroradiol 2010;31:324–26
    Abstract/FREE Full Text
  23. 23.↵
    1. Schneiders JJ,
    2. Ferns SP,
    3. van Ooij P,
    4. et al
    . Comparison of phase-contrast MR imaging and endovascular sonography for intracranial blood flow velocity measurements. AJNR Am J Neuroradiol 2012;33:1786–90
    Abstract/FREE Full Text
  24. 24.↵
    1. Chaloupka JC,
    2. Viñuela F,
    3. Kimme-Smith C,
    4. et al
    . Use of a Doppler guide wire for intravascular blood flow measurements: a validation study for potential neurologic endovascular applications. AJNR Am J Neuroradiol 1994;15:509–17
    Abstract/FREE Full Text
  25. 25.↵
    1. Augsburger L,
    2. Reymond P,
    3. Rufenacht DA,
    4. et al
    . Intracranial stents being modeled as a porous medium: flow simulation in stented cerebral aneurysms. Ann Biomed Eng 2011;39:850–63
    CrossRefPubMed
  26. 26.↵
    1. Larrabide I,
    2. Aguilar ML,
    3. Morales HG,
    4. et al
    . Intra-aneurysmal pressure and flow changes induced by flow diverters: relation to aneurysm size and shape. AJNR Am J Neuroradiol 2013;34:816–22
    Abstract/FREE Full Text
  27. 27.↵
    1. Shobayashi Y,
    2. Tateshima S,
    3. Kakizaki R,
    4. et al
    . Intra-aneurysmal hemodynamic alterations by a self-expandable intracranial stent and flow diversion stent: high intra-aneurysmal pressure remains regardless of flow velocity reduction. J Neurointerv Surg 2013; 5 Suppl 3:iii38–42
    Abstract/FREE Full Text
  28. 28.↵
    1. Schneiders JJ,
    2. Vanbavel E,
    3. Majoie CB,
    4. et al
    . A flow-diverting stent is not a pressure-diverting stent. AJNR Am J Neuroradiol 2013;34:E1–4
    Abstract/FREE Full Text
  29. 29.↵
    1. Reymond P,
    2. Bohraus Y,
    3. Perren F,
    4. et al
    . Validation of a patient-specific one-dimensional model of the systemic arterial tree. Am J Physiol Heart Circ Physiol 2011;301:H1173–82
    Abstract/FREE Full Text
  30. 30.↵
    1. Ford MD,
    2. Alperin N,
    3. Lee SH,
    4. et al
    . Characterization of volumetric flow rate waveforms in the normal internal carotid and vertebral arteries. Physiol Meas 2005;26:477–88
    CrossRefPubMedWeb of Science
  31. 31.↵
    1. Karmonik C,
    2. Yen C,
    3. Grossman RG,
    4. et al
    . Intra-aneurysmal flow patterns and wall shear stresses calculated with computational flow dynamics in an anterior communicating artery aneurysm depend on knowledge of patient-specific inflow rates. Acta Neurochir (Wien) 2009;151:479–85
    CrossRefPubMedWeb of Science
  32. 32.↵
    1. Karmonik C,
    2. Yen C,
    3. Diaz O,
    4. et al
    . Temporal variations of wall shear stress parameters in intracranial aneurysms—importance of patient-specific inflow waveforms for CFD calculations. Acta Neurochir (Wien) 2010;152:1391–98
    CrossRefPubMedWeb of Science
  33. 33.↵
    1. Melamed E,
    2. Lavy S,
    3. Bentin S,
    4. et al
    . Reduction in regional cerebral blood flow during normal aging in man. Stroke 1980;11:31–35
    Abstract/FREE Full Text
  34. 34.↵
    1. Hoi Y,
    2. Wasserman BA,
    3. Xie YJ,
    4. et al
    . Characterization of volumetric flow rate waveforms at the carotid bifurcations of older adults. Physiol Meas 2010;31:291–302
    CrossRefPubMed
  35. 35.↵
    1. Hassan T,
    2. Ezura M,
    3. Timofeev EV,
    4. et al
    . Computational simulation of therapeutic parent artery occlusion to treat giant vertebrobasilar aneurysm. AJNR Am J Neuroradiol 2004;25:63–68
    Abstract/FREE Full Text
  36. 36.↵
    1. Sun Q,
    2. Groth A,
    3. Aach T
    . Comprehensive validation of computational fluid dynamics simulations of in-vivo blood flow in patient-specific cerebral aneurysms. Med Phys 2012;39:742–54
    CrossRefPubMed
  37. 37.↵
    1. Jou LD,
    2. Quick CM,
    3. Young WL,
    4. et al
    . Computational approach to quantifying hemodynamic forces in giant cerebral aneurysms. AJNR Am J Neuroradiol 2003;24:1804–10
    Abstract/FREE Full Text
  38. 38.↵
    1. Boussel L,
    2. Rayz V,
    3. Martin A,
    4. et al
    . Phase-contrast magnetic resonance imaging measurements in intracranial aneurysms in vivo of flow patterns, velocity fields, and wall shear stress: comparison with computational fluid dynamics. Magn Reson Med 2009;61:409–17
    CrossRefPubMedWeb of Science
  39. 39.↵
    1. Rayz VL,
    2. Boussel L,
    3. Acevedo-Bolton G,
    4. et al
    . Numerical simulations of flow in cerebral aneurysms: comparison of CFD results and in vivo MRI measurements. J Biomech Eng 2008;130:051011
  40. 40.↵
    1. Sviri GE,
    2. Ghodke B,
    3. Britz GW,
    4. et al
    . Transcranial Doppler grading criteria for basilar artery vasospasm. Neurosurgery 2006;59:360–66
    CrossRefPubMed
  41. 41.↵
    1. Turner CL,
    2. Higgins JN,
    3. Kirkpatrick PJ
    . Assessment of transcranial color-coded duplex sonography for the surveillance of intracranial aneurysms treated with Guglielmi detachable coils. Neurosurgery 2003;53:866–71
    CrossRefPubMed
  42. 42.↵
    1. Ackerstaff RG,
    2. Suttorp MJ,
    3. van den Berg JC,
    4. et al
    . Prediction of early cerebral outcome by transcranial Doppler monitoring in carotid bifurcation angioplasty and stenting. J Vasc Surg 2005;41:618–24
    CrossRefPubMedWeb of Science
  43. 43.↵
    1. Chang W,
    2. Landgraf B,
    3. Johnson KM,
    4. et al
    . Velocity measurements in the middle cerebral arteries of healthy volunteers using 3D radial phase-contrast HYPRFlow: comparison with transcranial Doppler sonography and 2D phase-contrast MR imaging. AJNR Am J Neuroradiol 2011;32:54–59
    Abstract/FREE Full Text
  44. 44.↵
    1. Cebral JR,
    2. Putman CM,
    3. Alley MT,
    4. et al
    . Hemodynamics in normal cerebral arteries: qualitative comparison of 4D phase-contrast magnetic resonance and image-based computational fluid dynamics. J Eng Math 2009;64:367–78
    CrossRefPubMed
  45. 45.↵
    1. Waydhas C
    . Intrahospital transport of critically ill patients. Crit Care 1999;3:R83–89
    CrossRefPubMedWeb of Science
  46. 46.↵
    1. Mynard JP,
    2. Wasserman BA,
    3. Steinman DA
    . Errors in the estimation of wall shear stress by maximum Doppler velocity. Atherosclerosis 2013;227:259–66
    CrossRefPubMed
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 35 (1)
American Journal of Neuroradiology
Vol. 35, Issue 1
1 Jan 2014
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Cerebral Aneurysms Treated with Flow-Diverting Stents: Computational Models with Intravascular Blood Flow Measurements
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
M.R. Levitt, P.M. McGah, A. Aliseda, P.D. Mourad, J.D. Nerva, S.S. Vaidya, R.P. Morton, B.V. Ghodke, L.J. Kim
Cerebral Aneurysms Treated with Flow-Diverting Stents: Computational Models with Intravascular Blood Flow Measurements
American Journal of Neuroradiology Jan 2014, 35 (1) 143-148; DOI: 10.3174/ajnr.A3624

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Cerebral Aneurysms Treated with Flow-Diverting Stents: Computational Models with Intravascular Blood Flow Measurements
M.R. Levitt, P.M. McGah, A. Aliseda, P.D. Mourad, J.D. Nerva, S.S. Vaidya, R.P. Morton, B.V. Ghodke, L.J. Kim
American Journal of Neuroradiology Jan 2014, 35 (1) 143-148; DOI: 10.3174/ajnr.A3624
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • Materials and Methods
    • Results
    • Discussion
    • Conclusions
    • Footnotes
    • REFERENCES
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • Safety and efficacy of coated flow diverters in the treatment of ruptured intracranial aneurysms: a retrospective multicenter study
  • Improving Computational Fluid Dynamics Simulations of Coiled Aneurysms Using Finite Element Modeling
  • Residence time analysis on cerebral aneurysms treated with coils using planar-laser-induced fluorescence and computational fluid dynamics
  • Hemodynamic differences between Pipeline and coil-adjunctive intracranial stents
  • Computational fluid dynamics of cerebral aneurysm coiling using high-resolution and high-energy synchrotron X-ray microtomography: comparison with the homogeneous porous medium approach
  • Does Arterial Flow Rate Affect the Assessment of Flow-Diverter Stent Performance?
  • Endovascular treatment of ophthalmic artery aneurysms: ophthalmic artery patency following flow diversion versus coil embolization
  • Determination of a shear rate threshold for thrombus formation in intracranial aneurysms
  • Three-dimensional printing of anatomically accurate, patient specific intracranial aneurysm models
  • Extra-Aneurysmal Flow Modification Following Pipeline Embolization Device Implantation: Focus on Regional Branches, Perforators, and the Parent Vessel
  • Pipeline Embolization Device as primary treatment for blister aneurysms and iatrogenic pseudoaneurysms of the internal carotid artery
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • A Retrospective Study in Tentorial DAVFs
  • Proximal Protection Devices for Carotid Stenting
  • Rescue Reentry in Carotid Near-Occlusion
Show more NEUROINTERVENTION

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire