Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Research ArticlePediatric Neuroimaging

Brain MRI Measurements at a Term-Equivalent Age and Their Relationship to Neurodevelopmental Outcomes

H.W. Park, H.-K. Yoon, S.B. Han, B.S. Lee, I.Y. Sung, K.S. Kim and E.A. Kim
American Journal of Neuroradiology March 2014, 35 (3) 599-603; DOI: https://doi.org/10.3174/ajnr.A3720
H.W. Park
aFrom the Department of Pediatrics (H.W.P.), Division of Neonatology, Konkuk University Hospital, Konkuk University School of Medicine, Seoul, Korea
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
H.-K. Yoon
bDepartments of Radiology (H.-K.Y.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S.B. Han
cClinical Epidemiology and Biostatistics (S.B.H.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
B.S. Lee
eDepartment of Pediatrics, Division of Neonatology (B.S.L., K.S.K., E.A.K.), Asan Medical Center Children's Hospital, University of Ulsan, College of Medicine, Seoul, Korea.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
I.Y. Sung
dRehabilitation (I.Y.S.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
K.S. Kim
eDepartment of Pediatrics, Division of Neonatology (B.S.L., K.S.K., E.A.K.), Asan Medical Center Children's Hospital, University of Ulsan, College of Medicine, Seoul, Korea.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
E.A. Kim
eDepartment of Pediatrics, Division of Neonatology (B.S.L., K.S.K., E.A.K.), Asan Medical Center Children's Hospital, University of Ulsan, College of Medicine, Seoul, Korea.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

REFERENCES

  1. 1.↵
    1. Inder TE,
    2. Warfield SK,
    3. Wang H,
    4. et al
    . Abnormal cerebral structure is present at term in premature infants. Pediatrics 2005;115:286–94
    Abstract/FREE Full Text
  2. 2.↵
    1. Back SA,
    2. Luo NL,
    3. Borenstein NS,
    4. et al
    . Late oligodendrocyte progenitors coincide with the developmental window of vulnerability for human perinatal white matter injury. J Neurosci 2001;21:1302–12
    Abstract/FREE Full Text
  3. 3.↵
    1. Neubauer AP,
    2. Voss W,
    3. Kattner E
    . Outcome of extremely low birth weight survivors at school age: the influence of perinatal parameters on neurodevelopment. Eur J Pediatr 2008;167:87–95
    CrossRefPubMedWeb of Science
  4. 4.↵
    1. Shah DK,
    2. Doyle LW,
    3. Anderson PJ,
    4. et al
    . Adverse neurodevelopment in preterm infants with postnatal sepsis or necrotizing enterocolitis is mediated by white matter abnormalities on magnetic resonance imaging at term. J Pediatr 2008;153:170–75.e1
    CrossRefPubMedWeb of Science
  5. 5.↵
    1. Wood NS,
    2. Marlow N,
    3. Costeloe K,
    4. et al
    . Neurologic and developmental disability after extremely preterm birth: EPICure Study Group. N Engl J Med 2000;343:378–84
    CrossRefPubMedWeb of Science
  6. 6.↵
    1. Armstrong DL,
    2. Bagnall C,
    3. Harding JE,
    4. et al
    . Measurement of the subarachnoid space by ultrasound in preterm infants. Arch Dis Child Fetal Neonatal Ed 2002;86:F124–26
    Abstract/FREE Full Text
  7. 7.↵
    1. Volpe JJ
    . Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances. Lancet Neurol 2009;8:110–24
    CrossRefPubMedWeb of Science
  8. 8.↵
    1. Volpe JJ
    . Cerebellum of the premature infant: rapidly developing, vulnerable, clinically important. J Child Neurol 2009;24:1085–104
    Abstract/FREE Full Text
  9. 9.↵
    1. Sauerwein HC,
    2. Lassonde M
    . Cognitive and sensori-motor functioning in the absence of the corpus callosum: neuropsychological studies in callosal agenesis and callosotomized patients. Behav Brain Res 1994;64:229–40
    CrossRefPubMedWeb of Science
  10. 10.↵
    1. Peterson BS,
    2. Anderson AW,
    3. Ehrenkranz R,
    4. et al
    . Regional brain volumes and their later neurodevelopmental correlates in term and preterm infants. Pediatrics 2003;111:939–48
    Abstract/FREE Full Text
  11. 11.↵
    1. Horsch S,
    2. Muentjes C,
    3. Franz A,
    4. et al
    . Ultrasound diagnosis of brain atrophy is related to neurodevelopmental outcome in preterm infants. Acta Paediatr 2005;94:1815–21
    CrossRefPubMedWeb of Science
  12. 12.↵
    1. Rademaker KJ,
    2. Lam JN,
    3. Van Haastert IC,
    4. et al
    . Larger corpus callosum size with better motor performance in prematurely born children. Semin Perinatol 2004;28:279–87
    CrossRefPubMedWeb of Science
  13. 13.↵
    1. Iai M,
    2. Tanabe Y,
    3. Goto M,
    4. et al
    . A comparative magnetic resonance imaging study of the corpus callosum in neurologically normal children and children with spastic diplegia. Acta Paediatr 1994;83:1086–90
    CrossRefPubMedWeb of Science
  14. 14.↵
    1. Nosarti C,
    2. Rushe TM,
    3. Woodruff PW,
    4. et al
    . Corpus callosum size and very preterm birth: relationship to neuropsychological outcome. Brain 2004;127:2080–89
    Abstract/FREE Full Text
  15. 15.↵
    1. Dyet LE,
    2. Kennea N,
    3. Counsell SJ,
    4. et al
    . Natural history of brain lesions in extremely preterm infants studied with serial magnetic resonance imaging from birth and neurodevelopmental assessment. Pediatrics 2006;118:536–48
    Abstract/FREE Full Text
  16. 16.↵
    1. Nguyen The Tich S,
    2. Anderson PJ,
    3. Shimony JS,
    4. et al
    . A novel quantitative simple brain metric using MR imaging for preterm infants. AJNR Am J Neuroradiol 2009;30:125–31
    Abstract/FREE Full Text
  17. 17.↵
    1. Lind A,
    2. Parkkola R,
    3. Lehtonen L,
    4. et al
    . Associations between regional brain volumes at term-equivalent age and development at 2 years of age in preterm children. Pediatr Radiol 2011;41:953–61
    CrossRefPubMed
  18. 18.↵
    Effect of corticosteroids for fetal maturation on perinatal outcomes. NIH Consensus Statement 1994;12:1–24
    PubMed
  19. 19.↵
    1. Hamrick SE,
    2. Hansmann G
    . Patent ductus arteriosus of the preterm infant. Pediatrics 2010;125:1020–30
    Abstract/FREE Full Text
  20. 20.↵
    Early Treatment for Retinopathy of Prematurity Cooperative Group. Revised indications for the treatment of retinopathy of prematurity: results of the Early Treatment for Retinopathy of Prematurity Randomized Trial. Arch Ophthalmol 2003;121:1684–94
    CrossRefPubMedWeb of Science
  21. 21.↵
    1. Im KC,
    2. Choi IS,
    3. Ryu JS,
    4. et al
    . PET/CT fusion viewing software for use with picture archiving and communication systems. J Digit Imaging 2010;23:732–43
    CrossRefPubMed
  22. 22.↵
    1. Agarwal R,
    2. Chiswick ML,
    3. Rimmer S,
    4. et al
    . Antenatal steroids are associated with a reduction in the incidence of cerebral white matter lesions in very low birthweight infants. Arch Dis Child Fetal Neonatal Ed 2002;86:F96–101
    Abstract/FREE Full Text
  23. 23.↵
    1. Leviton A,
    2. Dammann O,
    3. Allred EN,
    4. et al
    . Antenatal corticosteroids and cranial ultrasonographic abnormalities. Am J Obstet Gynecol 1999;181:1007–17
    CrossRefPubMedWeb of Science
  24. 24.↵
    1. Stoll BJ,
    2. Hansen NI,
    3. Adams-Chapman I,
    4. et al
    . Neurodevelopmental and growth impairment among extremely low-birth-weight infants with neonatal infection. JAMA 2004;292:2357–65
    CrossRefPubMedWeb of Science
  25. 25.↵
    1. Schlapbach LJ,
    2. Aebischer M,
    3. Adams M,
    4. et al
    . Impact of sepsis on neurodevelopmental outcome in a Swiss national cohort of extremely premature infants. Pediatrics 2012;128:e348–57
  26. 26.↵
    1. Hayashi-Kurahashi N,
    2. Kidokoro H,
    3. Kubota T,
    4. et al
    . EEG for predicting early neurodevelopment in preterm infants: an observational cohort study. Pediatrics 2012;130:e891–97
    Abstract/FREE Full Text
  27. 27.↵
    1. Sutton PS,
    2. Darmstadt GL
    . Preterm birth and neurodevelopment: a review of outcomes and recommendations for early identification and cost-effective interventions. J Trop Pediatr 2013;59:258–65
    Abstract/FREE Full Text
  28. 28.↵
    1. Harijan P,
    2. Beer C,
    3. Glazebrook C,
    4. et al
    . Predicting developmental outcomes in very preterm infants: validity of a neonatal neurobehavioral assessment. Acta Paediatrica 2012;101:e275–81
    CrossRefPubMed
  29. 29.↵
    1. Singh P,
    2. Davies TI
    . A comparison of cephalometric measurements: a picture archiving and communication system versus the hand-tracing method: a preliminary study. Eur J Orthod 2011;33:350–53
    Abstract/FREE Full Text
  30. 30.↵
    1. Monsky WL,
    2. Raptopoulos V,
    3. Keogan MT,
    4. et al
    . Reproducibility of linear tumor measurements using PACS: comparison of caliper method with edge-tracing method. Eur Radiol 2004;14:519–25
    CrossRefPubMedWeb of Science
  31. 31.↵
    1. Khakharia S,
    2. Bigman D,
    3. Fragomen AT,
    4. et al
    . Comparison of PACS and hard-copy 51-inch radiographs for measuring leg length and deformity. Clin Orthop Relat Res 2011;469:244–50
    CrossRefPubMed
  32. 32.↵
    1. Limperopoulos C,
    2. Soul JS,
    3. Gauvreau K,
    4. et al
    . Late gestation cerebellar growth is rapid and impeded by premature birth. Pediatrics 2005;115:688–95
    Abstract/FREE Full Text
  33. 33.↵
    1. Rees SM,
    2. Loeliger MM,
    3. Munro KM,
    4. et al
    . Cerebellar development in a baboon model of preterm delivery: impact of specific ventilatory regimes. J Neuropathol Exp Neurol 2009;68:605–15
    CrossRefPubMed
  34. 34.↵
    1. Tich SNT,
    2. Anderson PJ,
    3. Hunt RW,
    4. et al
    . Neurodevelopmental and perinatal correlates of simple brain metrics in very preterm infants. Arch Pediatr Adolesc Med 2011;165:216–22
    CrossRefPubMedWeb of Science
  35. 35.↵
    1. Ney GC,
    2. Lantos G,
    3. Barr WB,
    4. et al
    . Cerebellar atrophy in patients with long-term phenytoin exposure and epilepsy. Arch Neurol 1994;51:767–71
    CrossRefPubMedWeb of Science
  36. 36.↵
    1. De Marcos FA,
    2. Ghizoni E,
    3. Kobayashi E,
    4. et al
    . Cerebellar volume and long-term use of phenytoin. Seizure 2003;12:312–15
    CrossRefPubMedWeb of Science
  37. 37.↵
    1. Hannah RS,
    2. Roth SH,
    3. Spira AW
    . Effect of phenobarbital on Purkinje cell growth patterns in the rat cerebellum. Exp Neurol 1988;100:354–64
    CrossRefPubMed
  38. 38.↵
    1. Shah DK,
    2. Anderson PJ,
    3. Carlin JB,
    4. et al
    . Reduction in cerebellar volumes in preterm infants: relationship to white matter injury and neurodevelopment at two years of age. Pediatr Res 2006;60:97–102
    CrossRefPubMedWeb of Science
  39. 39.↵
    1. Schlapbach LJ,
    2. Aebischer M,
    3. Adams M,
    4. et al
    . Impact of sepsis on neurodevelopmental outcome in a Swiss national cohort of extremely premature infants. Pediatrics 2011;128:e348–57
    Abstract/FREE Full Text
  40. 40.↵
    1. Wu YW,
    2. Colford JM
    . Chorioamnionitis as a risk factor for cerebral palsy. JAMA 2000;284:1417–24
    CrossRefPubMedWeb of Science
  41. 41.↵
    1. Rees S,
    2. Stringer M,
    3. Just Y,
    4. et al
    . The vulnerability of the fetal sheep brain to hypoxemia at mid-gestation. Dev Brain Res 1997;103:103–18
    CrossRefPubMed
  42. 42.↵
    1. Nagy Z,
    2. Westerberg H,
    3. Skare S,
    4. et al
    . Preterm children have disturbances of white matter at 11 years of age as shown by diffusion tensor imaging. Pediatr Res 2003;54:672–79
    CrossRefPubMedWeb of Science
  43. 43.↵
    1. Tekkok SB,
    2. Goldberg MP
    . Ampa/kainate receptor activation mediates hypoxic oligodendrocyte death and axonal injury in cerebral white matter. J Neurosci 2001;21:4237–48
    Abstract/FREE Full Text
  44. 44.↵
    1. Wood NS,
    2. Costeloe K,
    3. Gibson AT,
    4. et al
    . The EPICure study: associations and antecedents of neurological and developmental disability at 30 months of age following extremely preterm birth. Arch Dis Child Fetal Neonatal Ed 2005;90:F134–40
    Abstract/FREE Full Text
  45. 45.↵
    1. Hermann B,
    2. Hansen R,
    3. Seidenberg M,
    4. et al
    . Neurodevelopmental vulnerability of the corpus callosum to childhood onset localization-related epilepsy. NeuroImage 2003;18:284–92
    CrossRefPubMedWeb of Science
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 35 (3)
American Journal of Neuroradiology
Vol. 35, Issue 3
1 Mar 2014
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Brain MRI Measurements at a Term-Equivalent Age and Their Relationship to Neurodevelopmental Outcomes
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
H.W. Park, H.-K. Yoon, S.B. Han, B.S. Lee, I.Y. Sung, K.S. Kim, E.A. Kim
Brain MRI Measurements at a Term-Equivalent Age and Their Relationship to Neurodevelopmental Outcomes
American Journal of Neuroradiology Mar 2014, 35 (3) 599-603; DOI: 10.3174/ajnr.A3720

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Brain MRI Measurements at a Term-Equivalent Age and Their Relationship to Neurodevelopmental Outcomes
H.W. Park, H.-K. Yoon, S.B. Han, B.S. Lee, I.Y. Sung, K.S. Kim, E.A. Kim
American Journal of Neuroradiology Mar 2014, 35 (3) 599-603; DOI: 10.3174/ajnr.A3720
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • Materials and Methods
    • Results
    • Discussion
    • Conclusions
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • ERRATUM
  • PubMed
  • Google Scholar

Cited By...

  • Neonatal brain perivascular space volume as a predictor of neurodevelopmental outcomes at 24 months
  • Early Ultrasonic Monitoring of Brain Growth and Later Neurodevelopmental Outcome in Very Preterm Infants
  • Fetal brain growth and infant autistic traits
  • New Ultrasound Measurements to Bridge the Gap between Prenatal and Neonatal Brain Growth Assessment
  • Validation of an MRI Brain Injury and Growth Scoring System in Very Preterm Infants Scanned at 29- to 35-Week Postmenstrual Age
  • A New Ultrasound Marker for Bedside Monitoring of Preterm Brain Growth
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • FRACTURE MR in Congenital Vertebral Anomalies
  • Comparing MRI Perfusion in Pediatric Brain Tumors
  • Sodium MRI in Pediatric Brain Tumors
Show more Pediatric Neuroimaging

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire