Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Getting new auth cookie, if you see this message a lot, tell someone!
Review ArticleReview Articles
Open Access

Optimal Timing of Cerebral MRI in Preterm Infants to Predict Long-Term Neurodevelopmental Outcome: A Systematic Review

A. Plaisier, P. Govaert, M.H. Lequin and J. Dudink
American Journal of Neuroradiology May 2014, 35 (5) 841-847; DOI: https://doi.org/10.3174/ajnr.A3513
A. Plaisier
aFrom the Division of Neonatology (A.P., P.G., J.D.)
bDepartment of Pediatrics, and Division of Pediatric Radiology (A.P., M.H.L., J.D.), Department of Radiology, Erasmus Medical Center-Sophia, Rotterdam, the Netherlands
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P. Govaert
aFrom the Division of Neonatology (A.P., P.G., J.D.)
cDepartment of Pediatrics (P.G.), Koningin Paola Children's Hospital, Antwerp, Belgium.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M.H. Lequin
bDepartment of Pediatrics, and Division of Pediatric Radiology (A.P., M.H.L., J.D.), Department of Radiology, Erasmus Medical Center-Sophia, Rotterdam, the Netherlands
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J. Dudink
aFrom the Division of Neonatology (A.P., P.G., J.D.)
bDepartment of Pediatrics, and Division of Pediatric Radiology (A.P., M.H.L., J.D.), Department of Radiology, Erasmus Medical Center-Sophia, Rotterdam, the Netherlands
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

REFERENCES

  1. 1.↵
    1. Saigal S,
    2. Doyle LW
    . An overview of mortality and sequelae of preterm birth from infancy to adulthood. Lancet 2008;371:261–69
    CrossRefPubMedWeb of Science
  2. 2.↵
    1. Bhutta AT,
    2. Cleves MA,
    3. Casey PH,
    4. et al
    . Cognitive and behavioral outcomes of school-aged children who were born preterm: a meta-analysis. JAMA 2002;288:728–37
    CrossRefPubMedWeb of Science
  3. 3.↵
    1. Larroque B,
    2. Ancel PY,
    3. Marret S,
    4. et al
    . Neurodevelopmental disabilities and special care of 5-year-old children born before 33 weeks of gestation (the EPIPAGE study): a longitudinal cohort study. Lancet 2008;371:813–20
    CrossRefPubMedWeb of Science
  4. 4.↵
    1. Marlow N,
    2. Wolke D,
    3. Bracewell MA,
    4. et al
    . Neurologic and developmental disability at six years of age after extremely preterm birth. N Engl J Med 2005;352:9–19
    CrossRefPubMedWeb of Science
  5. 5.↵
    1. Williams J,
    2. Lee KJ,
    3. Anderson PJ
    . Prevalence of motor-skill impairment in preterm children who do not develop cerebral palsy: a systematic review. Dev Med Child Neurol 2010;52:232–37
    CrossRefPubMed
  6. 6.↵
    1. Rutherford MA,
    2. Supramaniam V,
    3. Ederies A,
    4. et al
    . Magnetic resonance imaging of white matter diseases of prematurity. Neuroradiology 2010;52:505–21
    CrossRefPubMedWeb of Science
  7. 7.↵
    1. Inder TE,
    2. Wells SJ,
    3. Mogridge NB,
    4. et al
    . Defining the nature of the cerebral abnormalities in the premature infant: a qualitative magnetic resonance imaging study. J Pediatr 2003;143:171–79
    CrossRefPubMedWeb of Science
  8. 8.↵
    1. Dyet LE,
    2. Kennea N,
    3. Counsell SJ,
    4. et al
    . Natural history of brain lesions in extremely preterm infants studied with serial magnetic resonance imaging from birth and neurodevelopmental assessment. Pediatrics 2006;118:536–48
    Abstract/FREE Full Text
  9. 9.↵
    1. Spittle AJ,
    2. Brown NC,
    3. Doyle LW,
    4. et al
    . Quality of general movements is related to white matter pathology in very preterm infants. Pediatrics 2008;121:e1184–89
    Abstract/FREE Full Text
  10. 10.↵
    1. Jeon TY,
    2. Kim JH,
    3. Yoo SY,
    4. et al
    . Neurodevelopmental outcomes in preterm infants: comparison of infants with and without diffuse excessive high signal intensity on MR images at near-term-equivalent age. Radiology 2012;263:518–26
    CrossRefPubMed
  11. 11.↵
    1. Volpe JJ
    . Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances. Lancet Neurol 2009;8:110–24
    CrossRefPubMedWeb of Science
  12. 12.↵
    1. Khwaja O,
    2. Volpe JJ
    . Pathogenesis of cerebral white matter injury of prematurity. Arch Dis Child Fetal Neonatal Ed 2008;93:F153–61
    Abstract/FREE Full Text
  13. 13.↵
    1. Hüppi PS,
    2. Murphy B,
    3. Maier SE,
    4. et al
    . Microstructural brain development after perinatal cerebral white matter injury assessed by diffusion tensor magnetic resonance imaging. Pediatrics 2001;107:455–60
    Abstract/FREE Full Text
  14. 14.↵
    1. Inder TE,
    2. Anderson NJ,
    3. Spencer C,
    4. et al
    . White matter injury in the premature infant: a comparison between serial cranial sonographic and MR findings at term. AJNR Am J Neuroradiol 2003;24:805–09
    Abstract/FREE Full Text
  15. 15.↵
    1. Woodward LJ,
    2. Anderson PJ,
    3. Austin NC,
    4. et al
    . Neonatal MRI to predict neurodevelopmental outcomes in preterm infants. N Engl J Med 2006;355:685–94
    CrossRefPubMedWeb of Science
  16. 16.↵
    1. Mirmiran M,
    2. Barnes PD,
    3. Keller K,
    4. et al
    . Neonatal brain magnetic resonance imaging before discharge is better than serial cranial ultrasound in predicting cerebral palsy in very low birth weight preterm infants. Pediatrics 2004;114:992–98
    Abstract/FREE Full Text
  17. 17.↵
    1. Valkama AM,
    2. Paakko EL,
    3. Vainionpaa LK,
    4. et al
    . Magnetic resonance imaging at term and neuromotor outcome in preterm infants. Acta Paediatr 2000;89:348–55
    CrossRefPubMedWeb of Science
  18. 18.↵
    1. Ment LR,
    2. Hirtz D,
    3. Huppi PS
    . Imaging biomarkers of outcome in the developing preterm brain. Lancet Neurol 2009;8:1042–55
    CrossRefPubMedWeb of Science
  19. 19.↵
    1. Counsell SJ,
    2. Rutherford MA,
    3. Cowan FM,
    4. et al
    . Magnetic resonance imaging of preterm brain injury. Arch Dis Child Fetal Neonatal Ed 2003;88:F269–74
    Abstract/FREE Full Text
  20. 20.↵
    1. Hüppi PS,
    2. Dubois J
    . Diffusion tensor imaging of brain development. Semin Fetal Neonatal Med 2006;11:489–97
    CrossRefPubMedWeb of Science
  21. 21.↵
    1. Jones DK
    . Studying connections in the living human brain with diffusion MRI. Cortex 2008;44:936–52
    CrossRefPubMedWeb of Science
  22. 22.↵
    1. Dudink J,
    2. Lequin M,
    3. van Pul C,
    4. et al
    . Fractional anisotropy in white matter tracts of very-low-birth-weight infants. Pediatr Radiol 2007;37:1216–23
    CrossRefPubMedWeb of Science
  23. 23.↵
    1. Miller SP,
    2. Vigneron DB,
    3. Henry RG,
    4. et al
    . Serial quantitative diffusion tensor MRI of the premature brain: development in newborns with and without injury. J Magn Reson Imaging 2002;16:621–32
    CrossRefPubMedWeb of Science
  24. 24.↵
    1. Counsell SJ,
    2. Allsop JM,
    3. Harrison MC,
    4. et al
    . Diffusion-weighted imaging of the brain in preterm infants with focal and diffuse white matter abnormality. Pediatrics 2003;112:1–7
    Abstract/FREE Full Text
  25. 25.↵
    1. Counsell SJ,
    2. Shen Y,
    3. Boardman JP,
    4. et al
    . Axial and radial diffusivity in preterm infants who have diffuse white matter changes on magnetic resonance imaging at term-equivalent age. Pediatrics 2006;117:376–86
    Abstract/FREE Full Text
  26. 26.↵
    1. Inder TE,
    2. Huppi PS,
    3. Warfield S,
    4. et al
    . Periventricular white matter injury in the premature infant is followed by reduced cerebral cortical gray matter volume at term. Ann Neurol 1999;46:755–60
    CrossRefPubMedWeb of Science
  27. 27.↵
    1. Thompson DK,
    2. Warfield SK,
    3. Carlin JB,
    4. et al
    . Perinatal risk factors altering regional brain structure in the preterm infant. Brain 2007;130:667–77
    Abstract/FREE Full Text
  28. 28.↵
    1. Inder TE,
    2. Warfield SK,
    3. Wang H,
    4. et al
    . Abnormal cerebral structure is present at term in premature infants. Pediatrics 2005;115:286–94
    Abstract/FREE Full Text
  29. 29.↵
    1. Keunen K,
    2. Kersbergen KJ,
    3. Groenendaal F,
    4. et al
    . Brain tissue volumes in preterm infants: prematurity, perinatal risk factors and neurodevelopmental outcome—a systematic review. J Matern Fetal Neonatal Med 2012;25(suppl 1):89–100
    PubMed
  30. 30.↵
    1. Mathur A,
    2. Inder T
    . Magnetic resonance imaging: insights into brain injury and outcomes in premature infants. J Commun Disord 2009;42:248–55
    CrossRefPubMedWeb of Science
  31. 31.↵
    1. Dubois J,
    2. Benders M,
    3. Cachia A,
    4. et al
    . Mapping the early cortical folding process in the preterm newborn brain. Cereb Cortex 2008;18:1444–54
    Abstract/FREE Full Text
  32. 32.↵
    1. Dubois J,
    2. Benders M,
    3. Lazeyras F,
    4. et al
    . Structural asymmetries of perisylvian regions in the preterm newborn. Neuroimage 2010;52:32–42
    CrossRefPubMedWeb of Science
  33. 33.↵
    1. Dubois J,
    2. Hertz-Pannier L,
    3. Cachia A,
    4. et al
    . Structural asymmetries in the infant language and sensori-motor networks. Cereb Cortex 2009;19:414–23
    Abstract/FREE Full Text
  34. 34.↵
    1. Ajayi-Obe M,
    2. Saeed N,
    3. Cowan FM,
    4. et al
    . Reduced development of cerebral cortex in extremely preterm infants. Lancet 2000;356:1162–63
    CrossRefPubMedWeb of Science
  35. 35.↵
    1. Hüppi PS,
    2. Schuknecht B,
    3. Boesch C,
    4. et al
    . Structural and neurobehavioral delay in postnatal brain development of preterm infants. Pediatr Res 1996;39:895–901
    CrossRefPubMedWeb of Science
  36. 36.↵
    1. Hüppi PS,
    2. Lazeyras F
    . Proton magnetic resonance spectroscopy ((1)H-MRS) in neonatal brain injury. Pediatr Res 2001;49:317–20
    CrossRefPubMedWeb of Science
  37. 37.↵
    1. Plaisier A,
    2. Raets MM,
    3. van der Starre C,
    4. et al
    . Safety of routine early MRI in preterm infants. Pediatr Radiol 2012;42:1205–11
    CrossRefPubMed
  38. 38.↵
    1. Hillenbrand CM,
    2. Reykowski A
    . MR imaging of the newborn: a technical perspective. Magn Reson Imaging Clin N Am 2012;20:63–79
    CrossRefPubMed
  39. 39.↵
    1. Miller SP,
    2. Ferriero DM,
    3. Leonard C,
    4. et al
    . Early brain injury in premature newborns detected with magnetic resonance imaging is associated with adverse early neurodevelopmental outcome. J Pediatr 2005;147:609–16
    CrossRefPubMedWeb of Science
  40. 40.↵
    1. Tam EW,
    2. Rosenbluth G,
    3. Rogers EE,
    4. et al
    . Cerebellar hemorrhage on magnetic resonance imaging in preterm newborns associated with abnormal neurologic outcome. J Pediatr 2011;158:245–50
    CrossRefPubMedWeb of Science
  41. 41.↵
    1. Cornette LG,
    2. Tanner SF,
    3. Ramenghi LA,
    4. et al
    . Magnetic resonance imaging of the infant brain: anatomical characteristics and clinical significance of punctate lesions. Arch Dis Child Fetal Neonatal Ed 2002;86:F171–77
    Abstract/FREE Full Text
  42. 42.↵
    1. Skiöld B,
    2. Vollmer B,
    3. Bohm B,
    4. et al
    . Neonatal magnetic resonance imaging and outcome at age 30 months in extremely preterm infants. J Pediatr 2012;160:559–566.e1
    CrossRefPubMedWeb of Science
  43. 43.↵
    1. Hnatyszyn G,
    2. Cyrylowski L,
    3. Czeszynska MB,
    4. et al
    . The role of magnetic resonance imaging in early prediction of cerebral palsy. Turk J Pediatr 2010;52:278–84
    PubMed
  44. 44.↵
    1. Spittle AJ,
    2. Boyd RN,
    3. Inder TE,
    4. et al
    . Predicting motor development in very preterm infants at 12 months' corrected age: the role of qualitative magnetic resonance imaging and general movements assessments. Pediatrics 2009;123:512–17
    Abstract/FREE Full Text
  45. 45.↵
    1. Spittle AJ,
    2. Cheong J,
    3. Doyle LW,
    4. et al
    . Neonatal white matter abnormality predicts childhood motor impairment in very preterm children. Dev Med Child Neurol 2011;53:1000–06
    CrossRefPubMed
  46. 46.↵
    1. Nanba Y,
    2. Matsui K,
    3. Aida N,
    4. et al
    . Magnetic resonance imaging regional T1 abnormalities at term accurately predict motor outcome in preterm infants. Pediatrics 2007;120:e10–e19
    Abstract/FREE Full Text
  47. 47.↵
    1. Brown NC,
    2. Inder TE,
    3. Bear MJ,
    4. et al
    . Neurobehavior at term and white and gray matter abnormalities in very preterm infants. J Pediatr 2009;155:32–8, 38.e1
    CrossRefPubMed
  48. 48.↵
    1. Aida N,
    2. Nishimura G,
    3. Hachiya Y,
    4. et al
    . MR imaging of perinatal brain damage: comparison of clinical outcome with initial and follow-up MR findings. AJNR Am J Neuroradiol 1998;19:1909–21
    Abstract
  49. 49.↵
    1. van Wezel-Meijler G,
    2. Van Der Knaap MS,
    3. Oosting J,
    4. et al
    . Predictive value of neonatal MRI as compared to ultrasound in premature infants with mild periventricular white matter changes. Neuropediatrics 1999;30:231–38
    CrossRefPubMedWeb of Science
  50. 50.↵
    1. Bayley N
    . Bayley Scales of Infant and Toddler Development, 3rd ed. San Antonio, Texas: Harcourt Assessment; 2006
  51. 51.↵
    1. Hart A,
    2. Whitby E,
    3. Wilkinson S,
    4. et al
    . Neuro-developmental outcome at 18 months in premature infants with diffuse excessive high signal intensity on MR imaging of the brain. Pediatr Radiol 2011;41:1284–92
    CrossRefPubMed
  52. 52.↵
    1. Sie LT,
    2. Hart AA,
    3. van Hof J,
    4. et al
    . Predictive value of neonatal MRI with respect to late MRI findings and clinical outcome: a study in infants with periventricular densities on neonatal ultrasound. Neuropediatrics 2005;36:78–89
    CrossRefPubMedWeb of Science
  53. 53.↵
    1. Munck P,
    2. Haataja L,
    3. Maunu J,
    4. et al
    . Cognitive outcome at 2 years of age in Finnish infants with very low birth weight born between 2001 and 2006. Acta Paediatr 2010;99:359–66
    CrossRefPubMedWeb of Science
  54. 54.↵
    1. Woodward LJ,
    2. Edgin JO,
    3. Thompson D,
    4. et al
    . Object working memory deficits predicted by early brain injury and development in the preterm infant. Brain 2005;128:2578–87
    Abstract/FREE Full Text
  55. 55.↵
    1. Spittle AJ,
    2. Treyvaud K,
    3. Doyle LW,
    4. et al
    . Early emergence of behavior and social-emotional problems in very preterm infants. J Am Acad Child Adolesc Psychiatry 2009;48:909–18
    CrossRefPubMedWeb of Science
  56. 56.↵
    1. Edgin JO,
    2. Inder TE,
    3. Anderson PJ,
    4. et al
    . Executive functioning in preschool children born very preterm: relationship with early white matter pathology. J Int Neuropsychol Soc 2008;14:90–101
    PubMedWeb of Science
  57. 57.↵
    1. Woodward LJ,
    2. Clark CA,
    3. Pritchard VE,
    4. et al
    . Neonatal white matter abnormalities predict global executive function impairment in children born very preterm. Dev Neuropsychol 2011;36:22–41
    CrossRefPubMed
  58. 58.↵
    1. Clark CA,
    2. Woodward LJ
    . Neonatal cerebral abnormalities and later verbal and visuospatial working memory abilities of children born very preterm. Dev Neuropsychol 2010;35:622–42
    CrossRefPubMed
  59. 59.↵
    1. Iwata S,
    2. Nakamura T,
    3. Hizume E,
    4. et al
    . Qualitative brain MRI at term and cognitive outcomes at 9 years after very preterm birth. Pediatrics 2012;129:e1138–47
    Abstract/FREE Full Text
  60. 60.↵
    1. Reidy N,
    2. Morgan A,
    3. Thompson DK,
    4. et al
    . Impaired language abilities and white matter abnormalities in children born very preterm and/or very low birth weight. J Pediatr 2013;162:719–24
    CrossRefPubMed
  61. 61.↵
    1. Iwata S,
    2. Iwata O,
    3. Bainbridge A,
    4. et al
    . Abnormal white matter appearance on term FLAIR predicts neuro-developmental outcome at 6 years old following preterm birth. Int J Dev Neurosci 2007;25:523–30
    CrossRefPubMed
  62. 62.↵
    1. de Bruïne FT,
    2. Van Den Berg-Huysmans AA,
    3. Leijser LM,
    4. et al
    . Clinical implications of MR imaging findings in the white matter in very preterm infants: a 2-year follow-up study. Radiology 2011;261:899–906
    CrossRefPubMed
  63. 63.↵
    1. Kidokoro H,
    2. Anderson PJ,
    3. Doyle LW,
    4. et al
    . High signal intensity on T2-weighted MR imaging at term-equivalent age in preterm infants does not predict 2-year neurodevelopmental outcomes. AJNR Am J Neuroradiol 2011;32:2005–10
    Abstract/FREE Full Text
  64. 64.↵
    1. Hagmann CF,
    2. De Vita E,
    3. Bainbridge A,
    4. et al
    . T2 at MR imaging is an objective quantitative measure of cerebral white matter signal intensity abnormality in preterm infants at term-equivalent age. Radiology 2009;252:209–17
    CrossRefPubMedWeb of Science
  65. 65.↵
    1. Papile LA,
    2. Burstein J,
    3. Burstein R,
    4. et al
    . Incidence and evolution of subependymal and intraventricular hemorrhage: a study of infants with birth weights less than 1,500 gm. J Pediatr 1978;92:529–34
    CrossRefPubMedWeb of Science
  66. 66.↵
    1. Jary S,
    2. De Carli A,
    3. Ramenghi LA,
    4. et al
    . Impaired brain growth and neurodevelopment in preterm infants with posthaemorrhagic ventricular dilatation. Acta Paediatr 2012;101:743–48
    CrossRefPubMed
  67. 67.↵
    1. De Vries LS,
    2. Groenendaal F,
    3. van Haastert IC,
    4. et al
    . Asymmetrical myelination of the posterior limb of the internal capsule in infants with periventricular haemorrhagic infarction: an early predictor of hemiplegia. Neuropediatrics 1999;30:314–19
    CrossRefPubMedWeb of Science
  68. 68.↵
    1. Horsch S,
    2. Kutz P,
    3. Roll C
    . Late germinal matrix hemorrhage-like lesions in very preterm infants. J Child Neurol 2010;25:809–14
    Abstract/FREE Full Text
  69. 69.↵
    1. Lind A,
    2. Lapinleimu H,
    3. Korkman M,
    4. et al
    . Five-year follow-up of prematurely born children with postnatally developing caudothalamic cysts. Acta Paediatr 2010;99:304–07
    PubMed
  70. 70.↵
    1. Drobyshevsky A,
    2. Bregman J,
    3. Storey P,
    4. et al
    . Serial diffusion tensor imaging detects white matter changes that correlate with motor outcome in premature infants. Dev Neurosci 2007;29:289–301
    CrossRefPubMedWeb of Science
  71. 71.↵
    1. Glass HC,
    2. Berman JI,
    3. Norcia AM,
    4. et al
    . Quantitative fiber tracking of the optic radiation is correlated with visual-evoked potential amplitude in preterm infants. AJNR Am J Neuroradiol 2010;31:1424–29
    Abstract/FREE Full Text
  72. 72.↵
    1. van Kooij BJ,
    2. De Vries LS,
    3. Ball G,
    4. et al
    . Neonatal tract-based spatial statistics findings and outcome in preterm infants. AJNR Am J Neuroradiol 2012;33:188–94
    Abstract/FREE Full Text
  73. 73.↵
    1. Krishnan ML,
    2. Dyet LE,
    3. Boardman JP,
    4. et al
    . Relationship between white matter apparent diffusion coefficients in preterm infants at term-equivalent age and developmental outcome at 2 years. Pediatrics 2007;120:e604–09
    Abstract/FREE Full Text
  74. 74.↵
    1. van Kooij BJ,
    2. Van Pul C,
    3. Benders MJ,
    4. et al
    . Fiber tracking at term displays gender differences regarding cognitive and motor outcome at 2 years of age in preterm infants. Pediatr Res 2011;70:626–32
    PubMedWeb of Science
  75. 75.↵
    1. Rogers CE,
    2. Anderson PJ,
    3. Thompson DK,
    4. et al
    . Regional cerebral development at term relates to school-age social-emotional development in very preterm children. J Am Acad Child Adolesc Psychiatry 2012;51:181–91
    CrossRefPubMed
  76. 76.↵
    1. Boardman JP,
    2. Craven C,
    3. Valappil S,
    4. et al
    . A common neonatal image phenotype predicts adverse neurodevelopmental outcome in children born preterm. Neuroimage 2010;52:409–14
    CrossRefPubMedWeb of Science
  77. 77.↵
    1. Kaukola T,
    2. Perhomaa M,
    3. Vainionpaa L,
    4. et al
    . Apparent diffusion coefficient on magnetic resonance imaging in pons and in corona radiata and relation with the neurophysiologic measurement and the outcome in very preterm infants. Neonatology 2010;97:15–21
    CrossRefPubMed
  78. 78.↵
    1. Rose J,
    2. Butler EE,
    3. Lamont LE,
    4. et al
    . Neonatal brain structure on MRI and diffusion tensor imaging, sex, and neurodevelopment in very-low-birthweight preterm children. Dev Med Child Neurol 2009;51:526–35
    CrossRefPubMedWeb of Science
  79. 79.↵
    1. Arzoumanian Y,
    2. Mirmiran M,
    3. Barnes PD,
    4. et al
    . Diffusion tensor brain imaging findings at term-equivalent age may predict neurologic abnormalities in low birth weight preterm infants. AJNR Am J Neuroradiol 2003;24:1646–53
    Abstract/FREE Full Text
  80. 80.↵
    1. Bassi L,
    2. Ricci D,
    3. Volzone A,
    4. et al
    . Probabilistic diffusion tractography of the optic radiations and visual function in preterm infants at term equivalent age. Brain 2008;131:573–82
    Abstract/FREE Full Text
  81. 81.↵
    1. Dubois J,
    2. Benders M,
    3. Borradori-Tolsa C,
    4. et al
    . Primary cortical folding in the human newborn: an early marker of later functional development. Brain 2008;131:2028–41
    Abstract/FREE Full Text
  82. 82.↵
    1. Kapellou O,
    2. Counsell SJ,
    3. Kennea N,
    4. et al
    . Abnormal cortical development after premature birth shown by altered allometric scaling of brain growth. PLoS Med 2006;3:e265
    CrossRefPubMed
  83. 83.↵
    1. Rathbone R,
    2. Counsell SJ,
    3. Kapellou O,
    4. et al
    . Perinatal cortical growth and childhood neurocognitive abilities. Neurology 2011;77:1510–17
    CrossRef
  84. 84.↵
    1. Badr LK,
    2. Bookheimer S,
    3. Purdy I,
    4. et al
    . Predictors of neurodevelopmental outcome for preterm infants with brain injury: MRI, medical and environmental factors. Early Hum Dev 2009;85:279–84
    CrossRefPubMedWeb of Science
  85. 85.↵
    1. Tan M,
    2. Abernethy L,
    3. Cooke R
    . Improving head growth in preterm infants: a randomised controlled trial II: MRI and developmental outcomes in the first year. Arch Dis Child Fetal Neonatal Ed 2008;93:f342–46
    CrossRefPubMed
  86. 86.↵
    1. Lind A,
    2. Parkkola R,
    3. Lehtonen L,
    4. et al
    . Associations between regional brain volumes at term-equivalent age and development at 2 years of age in preterm children. Pediatr Radiol 2011;41:953–61
    CrossRefPubMed
  87. 87.↵
    1. Lind A,
    2. Haataja L,
    3. Rautava L,
    4. et al
    . Relations between brain volumes, neuropsychological assessment and parental questionnaire in prematurely born children. Eur Child Adolesc Psychiatry 2010;19:407–17
    CrossRefPubMed
  88. 88.↵
    1. Shah DK,
    2. Anderson PJ,
    3. Carlin JB,
    4. et al
    . Reduction in cerebellar volumes in preterm infants: relationship to white matter injury and neurodevelopment at two years of age. Pediatr Res 2006;60:97–102
    CrossRefPubMedWeb of Science
  89. 89.↵
    1. van Kooij BJ,
    2. Benders MJ,
    3. Anbeek P,
    4. et al
    . Cerebellar volume and proton magnetic resonance spectroscopy at term, and neurodevelopment at 2 years of age in preterm infants. Dev Med Child Neurol 2012;54:260–66
    CrossRefPubMed
  90. 90.↵
    1. Peterson BS,
    2. Anderson AW,
    3. Ehrenkranz R,
    4. et al
    . Regional brain volumes and their later neurodevelopmental correlates in term and preterm infants. Pediatrics 2003;111:939–48
    Abstract/FREE Full Text
  91. 91.↵
    1. Gadin E,
    2. Lobo M,
    3. Paul DA,
    4. et al
    . Volumetric MRI and MRS and early motor development of infants born preterm. Pediatr Phys Ther 2012;24:38–44
    CrossRefPubMed
  92. 92.↵
    1. Shah DK,
    2. Guinane C,
    3. August P,
    4. et al
    . Reduced occipital regional volumes at term predict impaired visual function in early childhood in very low birth weight infants. Invest Ophthalmol Vis Sci 2006;47:3366–73
    Abstract/FREE Full Text
  93. 93.↵
    1. Thompson DK,
    2. Wood SJ,
    3. Doyle LW,
    4. et al
    . Neonate hippocampal volumes: prematurity, perinatal predictors, and 2-year outcome. Ann Neurol 2008;63:642–51
    CrossRefPubMedWeb of Science
  94. 94.↵
    1. Beauchamp MH,
    2. Thompson DK,
    3. Howard K,
    4. et al
    . Preterm infant hippocampal volumes correlate with later working memory deficits. Brain 2008;131:2986–94
    Abstract/FREE Full Text
  95. 95.↵
    1. Valkama AM,
    2. Tolonen EU,
    3. Kerttula LI,
    4. et al
    . Brainstem size and function at term age in relation to later neurosensory disability in high-risk, preterm infants. Acta Paediatr 2001;90:909–15
    CrossRefPubMed
  96. 96.↵
    1. Maunu J,
    2. Lehtonen L,
    3. Lapinleimu H,
    4. et al
    . Ventricular dilatation in relation to outcome at 2 years of age in very preterm infants: a prospective Finnish cohort study. Dev Med Child Neurol 2011;53:48–54
    CrossRefPubMed
  97. 97.↵
    1. Tich SN,
    2. Anderson PJ,
    3. Hunt RW,
    4. et al
    . Neurodevelopmental and perinatal correlates of simple brain metrics in very preterm infants. Arch Pediatr Adolesc Med 2011;165:216–22
    CrossRefPubMedWeb of Science
  98. 98.↵
    1. Spittle AJ,
    2. Doyle LW,
    3. Anderson PJ,
    4. et al
    . Reduced cerebellar diameter in very preterm infants with abnormal general movements. Early Hum Dev 2010;86:1–5
    PubMedWeb of Science
  99. 99.↵
    1. Thayyil S,
    2. Chandrasekaran M,
    3. Taylor A,
    4. et al
    . Cerebral magnetic resonance biomarkers in neonatal encephalopathy: a meta-analysis. Pediatrics 2010;125:e382–95
    Abstract/FREE Full Text
  100. 100.↵
    1. Nossin-Manor R,
    2. Chung AD,
    3. Whyte HEA,
    4. et al
    . Deep gray matter maturation in very preterm neonates: regional variations and pathology-related age-dependent changes in magnetization transfer ratio. Radiology 2012;263:510–17
    CrossRefPubMed
  101. 101.↵
    1. Smyser CD,
    2. Inder TE,
    3. Shimony JS,
    4. et al
    . Longitudinal analysis of neural network development in preterm infants. Cereb Cortex 2010;20:2852–62
    Abstract/FREE Full Text
  102. 102.↵
    1. Doyle LW
    . Antenatal magnesium sulfate and neuroprotection. Curr Opin Pediatr 2012;24:154–59
    CrossRefPubMed
  103. 103.↵
    1. Rees S,
    2. Harding R,
    3. Walker D
    . The biological basis of injury and neuroprotection in the fetal and neonatal brain. Int J Dev Neurosci 2011;29:551–63
    CrossRefPubMed
  104. 104.↵
    1. Jones DK,
    2. Cercignani M
    . Twenty-five pitfalls in the analysis of diffusion MRI data. NMR Biomed 2010;23:803–20
    CrossRefPubMedWeb of Science
  105. 105.↵
    1. Pannek K,
    2. Guzzetta A,
    3. Colditz PB,
    4. et al
    . Diffusion MRI of the neonate brain: acquisition, processing and analysis techniques. Pediatr Radiol 2012 42:1169–82
    CrossRefPubMed
  106. 106.↵
    1. De Vries LS,
    2. Van Haastert IL,
    3. Rademaker KJ,
    4. et al
    . Ultrasound abnormalities preceding cerebral palsy in high-risk preterm infants. J Pediatr 2004;144:815–20
    CrossRefPubMedWeb of Science
  107. 107.↵
    1. Horsch S,
    2. Skiold B,
    3. Hallberg B,
    4. et al
    . Cranial ultrasound and MRI at term age in extremely preterm infants. Arch Dis Child Fetal Neonatal Ed 2010;95:F310–14
    Abstract/FREE Full Text
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 35 (5)
American Journal of Neuroradiology
Vol. 35, Issue 5
1 May 2014
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Optimal Timing of Cerebral MRI in Preterm Infants to Predict Long-Term Neurodevelopmental Outcome: A Systematic Review
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
A. Plaisier, P. Govaert, M.H. Lequin, J. Dudink
Optimal Timing of Cerebral MRI in Preterm Infants to Predict Long-Term Neurodevelopmental Outcome: A Systematic Review
American Journal of Neuroradiology May 2014, 35 (5) 841-847; DOI: 10.3174/ajnr.A3513

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Optimal Timing of Cerebral MRI in Preterm Infants to Predict Long-Term Neurodevelopmental Outcome: A Systematic Review
A. Plaisier, P. Govaert, M.H. Lequin, J. Dudink
American Journal of Neuroradiology May 2014, 35 (5) 841-847; DOI: 10.3174/ajnr.A3513
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • Materials and Methods
    • Results
    • Discussions
    • Conclusions
    • Acknowledgments
    • REFERENCES
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • White Matter Injury on Early-versus-Term-Equivalent Age Brain MRI in Infants Born Preterm
  • Synthetic MRI of Preterm Infants at Term-Equivalent Age: Evaluation of Diagnostic Image Quality and Automated Brain Volume Segmentation
  • Advances in neonatal MRI of the brain: from research to practice
  • Cerebellar Growth Impairment Characterizes School-Aged Children Born Preterm without Perinatal Brain Lesions
  • Serial cranial ultrasonography or early MRI for detecting preterm brain injury?
  • Choice of Diffusion Tensor Estimation Approach Affects Fiber Tractography of the Fornix in Preterm Brain
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • An Atlas of Neonatal Neurovascular Imaging Anatomy as Depicted with Microvascular Imaging: The Intracranial Arteries
  • An Atlas of Neonatal Neurovascular Imaging Anatomy as Depicted with Microvascular Imaging: The Intracranial Veins
  • Clinical Translation of Hyperpolarized 13C Metabolic Probes for Glioma Imaging
Show more Review Articles

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire