Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Getting new auth cookie, if you see this message a lot, tell someone!
Research ArticleMethodologic Perspectives

Multivariate Classification of Blood Oxygen Level–Dependent fMRI Data with Diagnostic Intention: A Clinical Perspective

B. Sundermann, D. Herr, W. Schwindt and B. Pfleiderer
American Journal of Neuroradiology May 2014, 35 (5) 848-855; DOI: https://doi.org/10.3174/ajnr.A3713
B. Sundermann
aFrom the Department of Clinical Radiology (B.S., W.S., B.P.), University Hospital Münster, Münster, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D. Herr
bDepartment of Psychiatry and Psychotherapy (D.H.), University of Cologne, Cologne, Germany.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
W. Schwindt
aFrom the Department of Clinical Radiology (B.S., W.S., B.P.), University Hospital Münster, Münster, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
B. Pfleiderer
aFrom the Department of Clinical Radiology (B.S., W.S., B.P.), University Hospital Münster, Münster, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

REFERENCES

  1. 1.↵
    1. Huettel SA,
    2. Song AW,
    3. McCarthy G
    . Functional Magnetic Resonance Imaging. Sunderland, Massachusetts: Sinauer Associates; 2009
  2. 2.↵
    1. Zhang D,
    2. Raichle ME
    . Disease and the brain's dark energy. Nat Rev Neurol 2010;6:15–28
    CrossRefPubMedWeb of Science
  3. 3.↵
    1. Chen CH,
    2. Suckling J,
    3. Lennox BR,
    4. et al
    . A quantitative meta-analysis of fMRI studies in bipolar disorder. Bipolar Disord 2011;13:1–15
  4. 4.↵
    1. Bartsch AJ,
    2. Homola G,
    3. Biller A,
    4. et al
    . Diagnostic functional MRI: illustrated clinical applications and decision-making. J Magn Reson Imaging 2006;23:921–32
    CrossRefPubMed
  5. 5.↵
    1. Pillai JJ
    . The evolution of clinical functional imaging during the past 2 decades and its current impact on neurosurgical planning. AJNR Am J Neuroradiol 2010;31:219–25
    Abstract/FREE Full Text
  6. 6.↵
    1. Gruber O
    . Neuroimaging markers: their role for differential diagnosis and therapeutic decisions in personalized psychiatry [in German]. Nervenarzt 2011;82:1404, 406, 408
    CrossRefPubMed
  7. 7.↵
    1. Linden DE
    . The challenges and promise of neuroimaging in psychiatry. Neuron 2012;73:8–22
    CrossRefPubMedWeb of Science
  8. 8.↵
    1. Oertel-Knöchel V,
    2. Bittner RA,
    3. Knochel C,
    4. et al
    . Discovery and development of integrative biological markers for schizophrenia. Prog Neurobiol 2011;95:686–702
    CrossRefPubMed
  9. 9.↵
    1. Mössner R,
    2. Mikova O,
    3. Koutsilieri E,
    4. et al
    . Consensus paper of the WFSBP task force on biological markers: biological markers in depression. World J Biol Psychiatry 2007;8:141–74
    CrossRefPubMedWeb of Science
  10. 10.↵
    1. Hampel H,
    2. Lista S,
    3. Khachaturian ZS
    . Development of biomarkers to chart all Alzheimer's disease stages: the royal road to cutting the therapeutic gordian knot. Alzheimers Dement 2012;8:312–36
    CrossRefPubMed
  11. 11.↵
    1. Hyman SE
    . Can neuroscience be integrated into the DSM-V? Nat Rev Neurosci 2007;8:725–32
    CrossRefPubMedWeb of Science
  12. 12.↵
    1. de Souza LC,
    2. Lehericy S,
    3. Dubois B,
    4. et al
    . Neuroimaging in dementias. Curr Opin Psychiatry 2012;25:473–79
    CrossRefPubMed
  13. 13.↵
    1. Jack CR Jr.
    . Alzheimer disease: new concepts on its neurobiology and the clinical role imaging will play. Radiology 2012;263:344–61
    CrossRefPubMed
  14. 14.↵
    1. Mueller S,
    2. Wang D,
    3. Fox MD,
    4. et al
    . Individual variability in functional connectivity architecture of the human brain. Neuron 2013;77:586–95
    CrossRefPubMedWeb of Science
  15. 15.↵
    1. Raemaekers M,
    2. du Plessis S,
    3. Ramsey NF,
    4. et al
    . Test-retest variability underlying fMRI measurements. Neuroimage 2012;60:717–27
    CrossRefPubMedWeb of Science
  16. 16.↵
    1. Shehzad Z,
    2. Kelly AM,
    3. Reiss PT,
    4. et al
    . The resting brain: unconstrained yet reliable. Cereb Cortex 2009;19:2209–29
    Abstract/FREE Full Text
  17. 17.↵
    1. Nichols TE
    . Multiple testing corrections, nonparametric methods, and random field theory. Neuroimage 2012;62:811–15
    CrossRefPubMed
  18. 18.↵
    1. Norman KA,
    2. Polyn SM,
    3. Detre GJ,
    4. et al
    . Beyond mind-reading: multi-voxel pattern analysis of fMRI data. Trends Cogn Sci 2006;10:424–30
    CrossRefPubMedWeb of Science
  19. 19.↵
    1. Pereira F,
    2. Mitchell T,
    3. Botvinick M
    . Machine learning classifiers and fMRI: a tutorial overview. Neuroimage 2009;45:S199–209
    CrossRefPubMedWeb of Science
  20. 20.↵
    1. Haynes JD,
    2. Rees G
    . Decoding mental states from brain activity in humans. Nat Rev Neurosci 2006;7:523–34
    CrossRefPubMedWeb of Science
  21. 21.↵
    1. Klöppel S,
    2. Abdulkadir A,
    3. Jack CR Jr.,
    4. et al
    . Diagnostic neuroimaging across diseases. Neuroimage 2012;61:457–63
    CrossRefPubMedWeb of Science
  22. 22.↵
    1. Orrù G,
    2. Pettersson-Yeo W,
    3. Marquand AF,
    4. et al
    . Using support vector machine to identify imaging biomarkers of neurological and psychiatric disease: a critical review. Neurosci Biobehav Rev 2012;36:1140–52
    CrossRefPubMed
  23. 23.↵
    1. Alpaydin E
    . Introduction to Machine Learning. Cambridge, Massachusetts: MIT Press; 2010
  24. 24.↵
    1. Vapnik VN
    . The Nature of Statistical Learning Theory. 2nd ed. New York: Springer-Verlag; 2000
  25. 25.↵
    1. Derrfuss J,
    2. Brass M,
    3. von Cramon DY,
    4. et al
    . Neural activations at the junction of the inferior frontal sulcus and the inferior precentral sulcus: interindividual variability, reliability, and association with sulcal morphology. Hum Brain Mapp 2009;30:299–311
    CrossRefPubMedWeb of Science
  26. 26.↵
    1. Ellis R,
    2. Peters T
    1. Ford J,
    2. Farid H,
    3. Makedon F,
    4. et al
    . Patient classification of fMRI activation maps. In: Ellis R, Peters T, eds. Medical Image Computing and Computer-Assisted Intervention - MICCAI 2003, Lecture Notes in Computer Science, Vol. 2879. Berlin, Germany: Springer-Verlag; 2003:58
  27. 27.↵
    1. Barillot C,
    2. Haynor DR,
    3. Hellier P
    1. Kontos D,
    2. Megalooikonomou V,
    3. Pokrajac D,
    4. et al
    . Extraction of discriminative functional MRI activation patterns and an application to Alzheimer's disease. In: Barillot C, Haynor DR, Hellier P, eds. Medical Image Computing and Computer-Assisted Intervention - MICCAI 2004, Lecture Notes in Computer Science, Vol. 3217. Berlin, Germany: Springer-Verlag. 2004;727–35
  28. 28.↵
    1. Bogorodzki P,
    2. Rogowska J,
    3. Yurgelun-Todd DA
    . Structural group classification technique based on regional fMRI BOLD responses. IEEE Trans Med Imaging 2005;24:389–98
    CrossRefPubMedWeb of Science
  29. 29.↵
    1. Zhang L,
    2. Samaras D,
    3. Tomasi D,
    4. et al
    . Exploiting temporal information in functional magnetic resonance imaging brain data. Med Image Comput Comput Assist Interv 2005;8:679–87
    PubMed
  30. 30.↵
    1. Shinkareva SV,
    2. Ombao HC,
    3. Sutton BP,
    4. et al
    . Classification of functional brain images with a spatio-temporal dissimilarity map. Neuroimage 2006;33:63–71
    CrossRefPubMed
  31. 31.↵
    1. Chen R,
    2. Herskovits EH
    . Clinical diagnosis based on bayesian classification of functional magnetic-resonance data. Neuroinformatics 2007;5:178–88
    CrossRefPubMed
  32. 32.↵
    1. Calhoun VD,
    2. Maciejewski PK,
    3. Pearlson GD,
    4. et al
    . Temporal lobe and “default” hemodynamic brain modes discriminate between schizophrenia and bipolar disorder. Hum Brain Mapp 2008;29:1265–75
    CrossRefPubMedWeb of Science
  33. 33.↵
    1. Demirci O,
    2. Clark VP,
    3. Calhoun VD
    . A projection pursuit algorithm to classify individuals using fMRI data: application to schizophrenia. Neuroimage 2008;39:1774–82
    CrossRefPubMedWeb of Science
  34. 34.↵
    1. Demirci O,
    2. Clark VP,
    3. Magnotta VA,
    4. et al
    . A review of challenges in the use of fMRI for disease classification/characterization and a projection pursuit application from multi-site fMRI schizophrenia study. Brain Imaging Behav 2008;2:147–226
    CrossRefPubMedWeb of Science
  35. 35.↵
    1. Fu CH,
    2. Mourão-Miranda J,
    3. Costafreda SG,
    4. et al
    . Pattern classification of sad facial processing: toward the development of neurobiological markers in depression. Biol Psychiatry 2008;63:656–62
    CrossRefPubMedWeb of Science
  36. 36.↵
    1. Marquand AF,
    2. Mourão-Miranda J,
    3. Brammer MJ,
    4. et al
    . Neuroanatomy of verbal working memory as a diagnostic biomarker for depression. Neuroreport 2008;19:1507–11
    CrossRefPubMedWeb of Science
  37. 37.↵
    1. Michael AM,
    2. Calhoun VD,
    3. Andreasen NC,
    4. et al
    . A method to classify schizophrenia using inter-task spatial correlations of functional brain images. Conf Proc IEEE Eng Med Biol Soc 2008;2008:5510–13
    PubMed
  38. 38.↵
    1. Costafreda SG,
    2. Khanna A,
    3. Mourão-Miranda J,
    4. et al
    . Neural correlates of sad faces predict clinical remission to cognitive behavioural therapy in depression. Neuroreport 2009;20:637–41
    CrossRefPubMedWeb of Science
  39. 39.↵
    1. Arribas JI,
    2. Calhoun VD,
    3. Adali T
    . Automatic bayesian classification of healthy controls, bipolar disorder, and schizophrenia using intrinsic connectivity maps from fMRI data. IEEE Trans Biomed Eng 2010;57:2850–60
    CrossRefPubMed
  40. 40.↵
    1. Saur D,
    2. Ronneberger O,
    3. Kummerer D,
    4. et al
    . Early functional magnetic resonance imaging activations predict language outcome after stroke. Brain 2010;133:1252–64
    Abstract/FREE Full Text
  41. 41.↵
    1. Tripoliti EE,
    2. Fotiadis DI,
    3. Argyropoulou M,
    4. et al
    . A six stage approach for the diagnosis of the Alzheimer's disease based on fMRI data. J Biomed Inform 2010;43:307–20
    CrossRefPubMedWeb of Science
  42. 42.↵
    1. Yang H,
    2. Liu J,
    3. Sui J,
    4. et al
    . A hybrid machine learning method for fusing fMRI and genetic data: combining both improves classification of schizophrenia. Front Hum Neurosci 2010;4:192
    PubMed
  43. 43.↵
    1. Castro E,
    2. Martinez-Ramon M,
    3. Pearlson G,
    4. et al
    . Characterization of groups using composite kernels and multi-source fMRI analysis data: application to schizophrenia. Neuroimage 2011;58:526–36
    CrossRefPubMedWeb of Science
  44. 44.↵
    1. Costafreda SG,
    2. Fu CH,
    3. Picchioni M,
    4. et al
    . Pattern of neural responses to verbal fluency shows diagnostic specificity for schizophrenia and bipolar disorder. BMC Psychiatry 2011;11:18
    CrossRefPubMed
  45. 45.↵
    1. Hahn T,
    2. Marquand AF,
    3. Ehlis AC,
    4. et al
    . Integrating neurobiological markers of depression. Arch Gen Psychiatry 2011;68:361–68
    CrossRefPubMedWeb of Science
  46. 46.↵
    1. Hoeft F,
    2. McCandliss BD,
    3. Black JM,
    4. et al
    . Neural systems predicting long-term outcome in dyslexia. Proc Natl Acad Sci U S A 2011;108:361–66
    Abstract/FREE Full Text
  47. 47.↵
    1. Mourão-Miranda J,
    2. Hardoon DR,
    3. Hahn T,
    4. et al
    . Patient classification as an outlier detection problem: an application of the one-class support vector machine. Neuroimage 2011;58:793–804
    CrossRefPubMedWeb of Science
  48. 48.↵
    1. Nouretdinov I,
    2. Costafreda SG,
    3. Gammerman A,
    4. et al
    . Machine learning classification with confidence: application of transductive conformal predictors to MRI-based diagnostic and prognostic markers in depression. Neuroimage 2011;56:809–13
    CrossRefPubMedWeb of Science
  49. 49.↵
    1. Rizk-Jackson A,
    2. Stoffers D,
    3. Sheldon S,
    4. et al
    . Evaluating imaging biomarkers for neurodegeneration in pre-symptomatic Huntington's disease using machine learning techniques. Neuroimage 2011;56:788–96
    CrossRefPubMed
  50. 50.↵
    1. Tripoliti EE,
    2. Fotiadis DI,
    3. Argyropoulou M
    . A supervised method to assist the diagnosis and monitor progression of Alzheimer's disease using data from an fMRI experiment. Artif Intell Med 2011;53:35–45
    CrossRefPubMed
  51. 51.↵
    1. Weygandt M,
    2. Schaefer A,
    3. Schienle A,
    4. et al
    . Diagnosing different binge-eating disorders based on reward-related brain activation patterns. Hum Brain Mapp 2012;33:2135–46
    CrossRefPubMed
  52. 52.↵
    1. Abdulkadir A,
    2. Ronneberger O,
    3. Wolf RC,
    4. et al
    . Functional and structural MRI biomarkers to detect pre-clinical neurodegeneration. Curr Alzheimer Res 2013;10:125–34
    CrossRefPubMed
  53. 53.↵
    1. Andersen AH,
    2. Rayens WS,
    3. Liu Y,
    4. et al
    . Partial least squares for discrimination in fMRI data. Magn Reson Imaging 2012;30:446–52
    CrossRefPubMed
  54. 54.↵
    1. Grotegerd D,
    2. Suslow T,
    3. Bauer J,
    4. et al
    . Discriminating unipolar and bipolar depression by means of fMRI and pattern classification: a pilot study. Eur Arch Psychiatry Clin Neurosci 2013;63:119–31
  55. 55.↵
    1. Du W,
    2. Calhoun VD,
    3. Li H,
    4. et al
    . High classification accuracy for schizophrenia with rest and task fMRI data. Front Hum Neurosci 2012;6:145
    PubMed
  56. 56.↵
    1. Mourão-Miranda J,
    2. Oliveira L,
    3. Ladouceur CD,
    4. et al
    . Pattern recognition and functional neuroimaging help to discriminate healthy adolescents at risk for mood disorders from low risk adolescents. PLoS One 2012;7:e29482
    CrossRefPubMed
  57. 57.↵
    1. Mourão-Miranda J,
    2. Almeida JR,
    3. Hassel S,
    4. et al
    . Pattern recognition analyses of brain activation elicited by happy and neutral faces in unipolar and bipolar depression. Bipolar Disord 2012;14:451–60
    CrossRef
  58. 58.↵
    1. Nejad AB,
    2. Madsen KH,
    3. Ebdrup BH,
    4. et al
    . Neural markers of negative symptom outcomes in distributed working memory brain activity of antipsychotic-naive schizophrenia patients. Int J Neuropsychopharmacol 2013;16:1195–204
    Abstract/FREE Full Text
  59. 59.↵
    1. Ramezani M,
    2. Abolmaesumi P,
    3. Marble K,
    4. et al
    . Classification of individuals based on sparse representation of brain cognitive patterns: a functional MRI study. Conf Proc IEEE Eng Med Biol Soc 2012;2012:2688–91
    PubMed
  60. 60.↵
    1. Weygandt M,
    2. Blecker CR,
    3. Schafer A,
    4. et al
    . fMRI pattern recognition in obsessive-compulsive disorder. Neuroimage 2012;60:1186–93
    CrossRefPubMed
  61. 61.↵
    1. Yoon JH,
    2. Nguyen DV,
    3. McVay LM,
    4. et al
    . Automated classification of fMRI during cognitive control identifies more severely disorganized subjects with schizophrenia. Schizophr Res 2012;135:28–33
    CrossRefPubMed
  62. 62.↵
    1. Rish I,
    2. Cecchi G,
    3. Thyreau B,
    4. et al
    . Schizophrenia as a network disease: disruption of emergent brain function in patients with auditory hallucinations. PLoS One 2013;8:e50625
    CrossRefPubMed
  63. 63.↵
    1. Kim J,
    2. Lee JH
    . Integration of structural and functional magnetic resonance imaging improves mild cognitive impairment detection. Magn Reson Imaging 2013;31:718–32
    CrossRefPubMed
  64. 64.↵
    1. Jafri MJ,
    2. Calhoun VD
    . Functional classification of schizophrenia using feed forward neural networks. Conf Proc IEEE Eng Med Biol Soc 2006;(suppl):6631–34
  65. 65.↵
    1. Wang K,
    2. Jiang T,
    3. Liang M,
    4. et al
    . Discriminative analysis of early Alzheimer's disease based on two intrinsically anti-correlated networks with resting-state fMRI. Med Image Comput Comput Assist Interv 2006;9:340–47
    PubMed
  66. 66.↵
    1. Shi F,
    2. Liu Y,
    3. Jiang T,
    4. et al
    . Regional homogeneity and anatomical parcellation for fMRI image classification: application to schizophrenia and normal controls. Med Image Comput Comput Assist Interv 2007;10(pt 2):136–43
  67. 67.↵
    1. Zhu CZ,
    2. Zang YF,
    3. Cao QJ,
    4. et al
    . Fisher discriminative analysis of resting-state brain function for attention-deficit/hyperactivity disorder. Neuroimage 2008;40:110–20
    CrossRefPubMedWeb of Science
  68. 68.↵
    1. Craddock RC,
    2. Holtzheimer PE 3rd.,
    3. Hu XP,
    4. et al
    . Disease state prediction from resting state functional connectivity. Magn Reson Med 2009;62:1619–28
    CrossRefPubMed
  69. 69.↵
    1. Supekar K,
    2. Musen M,
    3. Menon V
    . Development of large-scale functional brain networks in children. PLoS Biol 2009;7:e1000157
    CrossRefPubMed
  70. 70.↵
    1. Shen H,
    2. Wang L,
    3. Liu Y,
    4. et al
    . Discriminative analysis of resting-state functional connectivity patterns of schizophrenia using low dimensional embedding of fMRI. Neuroimage 2010;49:3110–21
    CrossRefPubMedWeb of Science
  71. 71.↵
    1. Zhou J,
    2. Greicius MD,
    3. Gennatas ED,
    4. et al
    . Divergent network connectivity changes in behavioural variant frontotemporal dementia and Alzheimer's disease. Brain 2010;133:1352–67
    Abstract/FREE Full Text
  72. 72.↵
    1. Anderson JS,
    2. Nielsen JA,
    3. Froehlich AL,
    4. et al
    . Functional connectivity magnetic resonance imaging classification of autism. Brain 2011;134:3742–54
    Abstract/FREE Full Text
  73. 73.↵
    1. Chen G,
    2. Ward BD,
    3. Xie C,
    4. et al
    . Classification of Alzheimer disease, mild cognitive impairment, and normal cognitive status with large-scale network analysis based on resting-state functional MR imaging. Radiology 2011;259:213–21
    CrossRefPubMedWeb of Science
  74. 74.↵
    1. Fan Y,
    2. Liu Y,
    3. Wu H,
    4. et al
    . Discriminant analysis of functional connectivity patterns on Grassmann manifold. Neuroimage 2011;56:2058–67
    CrossRefPubMed
  75. 75.↵
    1. Brown MR,
    2. Sidhu GS,
    3. Greiner R,
    4. et al
    . ADHD-200 global competition: Diagnosing ADHD using personal characteristic data can outperform resting state fMRI measurements. Front Syst Neurosci 2012;6:69
    PubMed
  76. 76.↵
    1. Bohland JW,
    2. Saperstein S,
    3. Pereira F,
    4. et al
    . Network, anatomical, and non-imaging measures for the prediction of ADHD diagnosis in individual subjects. Front Syst Neurosci 2012;6:78
    PubMed
  77. 77.↵
    1. Cheng W,
    2. Ji X,
    3. Zhang J,
    4. et al
    . Individual classification of ADHD patients by integrating multiscale neuroimaging markers and advanced pattern recognition techniques. Front Syst Neurosci 2012;6:58
    PubMed
  78. 78.↵
    1. Colby JB,
    2. Rudie JD,
    3. Brown JA,
    4. et al
    . Insights into multimodal imaging classification of ADHD. Front Syst Neurosci 2012;6:59
    PubMed
  79. 79.↵
    1. Dai Z,
    2. Yan C,
    3. Wang Z,
    4. et al
    . Discriminative analysis of early Alzheimer's disease using multi-modal imaging and multi-level characterization with multi-classifier (M3). Neuroimage 2012;59:2187–95
    CrossRefPubMedWeb of Science
  80. 80.↵
    1. Dai D,
    2. Wang J,
    3. Hua J,
    4. et al
    . Classification of ADHD children through multimodal magnetic resonance imaging. Front Syst Neurosci 2012;6:63
    PubMed
  81. 81.↵
    1. Eloyan A,
    2. Muschelli J,
    3. Nebel MB,
    4. et al
    . Automated diagnoses of attention deficit hyperactive disorder using magnetic resonance imaging. Front Syst Neurosci 2012;6:61
    PubMed
  82. 82.↵
    1. Koch W,
    2. Teipel S,
    3. Mueller S,
    4. et al
    . Diagnostic power of default mode network resting state fMRI in the detection of Alzheimer's disease. Neurobiol Aging 2012;33:466–78
    CrossRefPubMedWeb of Science
  83. 83.↵
    1. Long D,
    2. Wang J,
    3. Xuan M,
    4. et al
    . Automatic classification of early Parkinson's disease with multi-modal MR imaging. PLoS One 2012;7:e47714
    CrossRefPubMed
  84. 84.↵
    1. Ma Q,
    2. Zeng LL,
    3. Shen H,
    4. et al
    . Altered cerebellar-cerebral resting-state functional connectivity reliably identifies major depressive disorder. Brain Res 2013;1495:86–94
    CrossRefPubMed
  85. 85.↵
    1. Meier TB,
    2. Desphande AS,
    3. Vergun S,
    4. et al
    . Support vector machine classification and characterization of age-related reorganization of functional brain networks. Neuroimage 2012;60:601–13
    CrossRefPubMedWeb of Science
  86. 86.↵
    1. Olivetti E,
    2. Greiner S,
    3. Avesani P
    . ADHD diagnosis from multiple data sources with batch effects. Front Syst Neurosci 2012;6:70
    PubMed
  87. 87.↵
    1. Richiardi J,
    2. Gschwind M,
    3. Simioni S,
    4. et al
    . Classifying minimally disabled multiple sclerosis patients from resting state functional connectivity. Neuroimage 2012;62:2021–33
    CrossRefPubMedWeb of Science
  88. 88.↵
    1. Sato JR,
    2. Hoexter MQ,
    3. Fujita A,
    4. et al
    . Evaluation of pattern recognition and feature extraction methods in ADHD prediction. Front Syst Neurosci 2012;6:68
    PubMed
  89. 89.↵
    1. Sidhu GS,
    2. Asgarian N,
    3. Greiner R,
    4. et al
    . Kernel principal component analysis for dimensionality reduction in fMRI-based diagnosis of ADHD. Front Syst Neurosci 2012;6:74
    PubMed
  90. 90.↵
    1. Tang Y,
    2. Wang L,
    3. Cao F,
    4. et al
    . Identify schizophrenia using resting-state functional connectivity: an exploratory research and analysis. Biomed Eng Online 2012;11:50
    CrossRefPubMed
  91. 91.↵
    1. Venkataraman A,
    2. Whitford TJ,
    3. Westin CF,
    4. et al
    . Whole brain resting state functional connectivity abnormalities in schizophrenia. Schizophr Res 2012;139:7–12
    CrossRefPubMed
  92. 92.↵
    1. Wee CY,
    2. Yap PT,
    3. Zhang D,
    4. et al
    . Identification of MCI individuals using structural and functional connectivity networks. Neuroimage 2012;59:2045–56
    CrossRefPubMedWeb of Science
  93. 93.↵
    1. Zeng LL,
    2. Shen H,
    3. Liu L,
    4. et al
    . Identifying major depression using whole-brain functional connectivity: a multivariate pattern analysis. Brain 2012;135:1498–507
    Abstract/FREE Full Text
  94. 94.↵
    1. Zhang Z,
    2. Liu Y,
    3. Jiang T,
    4. et al
    . Altered spontaneous activity in Alzheimer's disease and mild cognitive impairment revealed by regional homogeneity. Neuroimage 2012;59:1429–40
    CrossRefPubMedWeb of Science
  95. 95.↵
    1. Fair DA,
    2. Nigg JT,
    3. Iyer S,
    4. et al
    . Distinct neural signatures detected for ADHD subtypes after controlling for micro-movements in resting state functional connectivity MRI data. Front Syst Neurosci 2012;6:80
    CrossRefPubMed
  96. 96.↵
    1. Yu Y,
    2. Shen H,
    3. Zhang H,
    4. et al
    . Functional connectivity-based signatures of schizophrenia revealed by multiclass pattern analysis of resting-state fMRI from schizophrenic patients and their healthy siblings. Biomed Eng Online 2013;12:10
    CrossRefPubMed
  97. 97.↵
    1. Zhang D,
    2. Liu B,
    3. Chen J,
    4. et al
    . Determination of vascular dementia brain in distinct frequency bands with whole brain functional connectivity patterns. PLoS One 2013;8:e54512
    CrossRefPubMed
  98. 98.↵
    1. van den Heuvel MP,
    2. Hulshoff Pol HE
    . Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur Neuropsychopharmacol 2010;20:519–34
    CrossRefPubMed
  99. 99.↵
    1. Lee MH,
    2. Smyser CD,
    3. Shimony JS
    . Resting-state fMRI: a review of methods and clinical applications. AJNR Am J Neuroradiol 2013;34:1866–72
    Abstract/FREE Full Text
  100. 100.↵
    1. Fan J,
    2. Xu P,
    3. Van Dam NT,
    4. et al
    . Spontaneous brain activity relates to autonomic arousal. J Neurosci 2012;32:11176–86
    Abstract/FREE Full Text
  101. 101.↵
    1. De Havas JA,
    2. Parimal S,
    3. Soon CS,
    4. et al
    . Sleep deprivation reduces default mode network connectivity and anti-correlation during rest and task performance. Neuroimage 2012;59:1745–51
    CrossRefPubMedWeb of Science
  102. 102.↵
    1. Van Dijk KR,
    2. Hedden T,
    3. Venkataraman A,
    4. et al
    . Intrinsic functional connectivity as a tool for human connectomics: theory, properties, and optimization. J Neurophysiol 2010;103:297–321
    Abstract/FREE Full Text
  103. 103.↵
    1. Anderson JS,
    2. Ferguson MA,
    3. Lopez-Larson M,
    4. et al
    . Reproducibility of single-subject functional connectivity measurements. AJNR Am J Neuroradiol 2011;32:548–55
    Abstract/FREE Full Text
  104. 104.↵
    1. Margulies DS,
    2. Bottger J,
    3. Long X,
    4. et al
    . Resting developments: a review of fMRI post-processing methodologies for spontaneous brain activity. MAGMA 2010;23:289–307
    CrossRefPubMed
  105. 105.↵
    1. Adler RH
    . Engel's biopsychosocial model is still relevant today. J Psychosom Res 2009;67:607–11
    CrossRefPubMedWeb of Science
  106. 106.↵
    1. Engel GL
    . The need for a new medical model: a challenge for biomedicine. Science 1977;196:129–36
    Abstract/FREE Full Text
  107. 107.↵
    1. Smith RC,
    2. Fortin AH,
    3. Dwamena F,
    4. et al
    . An evidence-based patient-centered method makes the biopsychosocial model scientific. Patient Educ Couns 2013;91:265–70
    CrossRefPubMed
  108. 108.↵
    1. Fuchs T
    . Subjectivity and intersubjectivity in psychiatric diagnosis. Psychopathology 2010;43:268–74
    CrossRefPubMed
  109. 109.↵
    1. Büchi S,
    2. Sensky T,
    3. Sharpe L,
    4. et al
    . Graphic representation of illness: a novel method of measuring patients' perceptions of the impact of illness. Psychother Psychosom 1998;67:222–25
    CrossRefPubMedWeb of Science
  110. 110.↵
    1. Marquand AF,
    2. De Simoni S,
    3. O'Daly OG,
    4. et al
    . Pattern classification of working memory networks reveals differential effects of methylphenidate, atomoxetine, and placebo in healthy volunteers. Neuropsychopharmacology 2011;36:1237–47
    CrossRefPubMedWeb of Science
  111. 111.↵
    1. Biswal BB,
    2. Mennes M,
    3. Zuo XN,
    4. et al
    . Toward discovery science of human brain function. Proc Natl Acad Sci U S A 2010;107:4734–39
    Abstract/FREE Full Text
  112. 112.↵
    1. Gong G,
    2. He Y,
    3. Evans AC
    . Brain connectivity: gender makes a difference. Neuroscientist 2011;17:575–91
    Abstract/FREE Full Text
  113. 113.↵
    1. Friedman L,
    2. Glover GH,
    3. Krenz D,
    4. et al
    . Reducing inter-scanner variability of activation in a multicenter fMRI study: role of smoothness equalization. Neuroimage 2006;32:1656–68
    CrossRefPubMedWeb of Science
  114. 114.↵
    1. Ioannidis JP
    . Why most published research findings are false. PLoS Med 2005;2:e124
    CrossRefPubMed
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 35 (5)
American Journal of Neuroradiology
Vol. 35, Issue 5
1 May 2014
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Multivariate Classification of Blood Oxygen Level–Dependent fMRI Data with Diagnostic Intention: A Clinical Perspective
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
B. Sundermann, D. Herr, W. Schwindt, B. Pfleiderer
Multivariate Classification of Blood Oxygen Level–Dependent fMRI Data with Diagnostic Intention: A Clinical Perspective
American Journal of Neuroradiology May 2014, 35 (5) 848-855; DOI: 10.3174/ajnr.A3713

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Multivariate Classification of Blood Oxygen Level–Dependent fMRI Data with Diagnostic Intention: A Clinical Perspective
B. Sundermann, D. Herr, W. Schwindt, B. Pfleiderer
American Journal of Neuroradiology May 2014, 35 (5) 848-855; DOI: 10.3174/ajnr.A3713
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • Conclusions
    • Footnotes
    • REFERENCES
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • Distinct Neural Profiles of Frontoparietal Networks in Boys with ADHD and Boys with Persistent Depressive Disorder
  • Reliability of single-subject neural activation patterns in speech production tasks
  • Interaction of Developmental Venous Anomalies with Resting-State Functional MRI Measures
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • A Meta-Analysis on the Diagnostic Performance of 18F-FDG and 11C-Methionine PET for Differentiating Brain Tumors
  • Guidelines for the Ethical Use of Neuroimages in Medical Testimony: Report of a Multidisciplinary Consensus Conference
Show more METHODOLOGIC PERSPECTIVES

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire