Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Getting new auth cookie, if you see this message a lot, tell someone!
Research ArticleMethodologic Perspectives

A Meta-Analysis on the Diagnostic Performance of 18F-FDG and 11C-Methionine PET for Differentiating Brain Tumors

C. Zhao, Y. Zhang and J. Wang
American Journal of Neuroradiology June 2014, 35 (6) 1058-1065; DOI: https://doi.org/10.3174/ajnr.A3718
C. Zhao
aFrom the Department of Nuclear Medicine (C.Z., J.W.), Hangzhou First People's Hospital, Hangzhou Cancer Hospital, Hangzhou, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Y. Zhang
bDepartment of Nuclear Medicine (Y.Z.), Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J. Wang
aFrom the Department of Nuclear Medicine (C.Z., J.W.), Hangzhou First People's Hospital, Hangzhou Cancer Hospital, Hangzhou, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Chen W,
    2. Silverman DH,
    3. Delaloye S,
    4. et al
    . 18F-FDOPA PET imaging of brain tumors: comparison study with 18F-FDG-PET and evaluation of diagnostic accuracy. J Nucl Med 2006;47:904–11
    Abstract/FREE Full Text
  2. 2.↵
    1. Ricci PE,
    2. Karis JP,
    3. Heiserman JE,
    4. et al
    . Differentiating recurrent tumor from radiation necrosis: time for re-evaluation of positron emission tomography? AJNR Am J Neuroradiol 1998;19:407–13
    Abstract
  3. 3.↵
    1. Wong TZ,
    2. van der Westhuizen GJ,
    3. Coleman RE
    . Positron emission tomography imaging of brain tumors. Neuroimaging Clin N Am 2002;12:615–26
    CrossRefPubMedWeb of Science
  4. 4.↵
    1. Sasaki M,
    2. Kuwabara Y,
    3. Yoshida T,
    4. et al
    . A comparative study of thallium-201 SPET, carbon-11 methionine PET and fluorine-18 fluorodeoxyglucose PET for the differentiation of astrocytic tumours. Eur J Nucl Med 1998;25:1261–69
    CrossRefPubMedWeb of Science
  5. 5.↵
    1. Zuo C,
    2. Liu Y,
    3. Guan Y,
    4. et al
    . Clinical application of FDG-PET for the diagnosis of recurrent glioma. [in Chinese] Nuclear Techniques 2001;24:899–902
  6. 6.↵
    1. Gómez-Río M,
    2. Rodriguez-Fernandez A,
    3. Ramos-Font C,
    4. et al
    . Diagnostic accuracy of 201Thallium-SPECT and 18F-FDG-PET in the clinical assessment of glioma recurrence. Eur J Nucl Med Mol Imaging 2008;35:966–75
    CrossRefPubMed
  7. 7.↵
    1. Choi SJ,
    2. Kim JS,
    3. Kim JH,
    4. et al
    . [18F]3′-deoxy-3′-fluorothymidine PET for the diagnosis and grading of brain tumors. Eur J Nucl Med Mol Imaging 2005;32:653–59
    CrossRefPubMed
  8. 8.↵
    1. Pauleit D,
    2. Stoffels G,
    3. Bachofner A,
    4. et al
    . Comparison of (18)F-FET and (18)F-FDG-PET in brain tumors. Nucl Med Biol 2009;36:779–87
    CrossRefPubMedWeb of Science
  9. 9.↵
    1. Lau EW,
    2. Drummond KJ,
    3. Ware RE,
    4. et al
    . Comparative PET study using F-18 FET and F-18 FDG for the evaluation of patients with suspected brain tumour. J Clin Neurosci 2010;17:43–49
    CrossRefPubMed
  10. 10.↵
    1. Estrada G,
    2. Gonzalez-Maya L,
    3. Celis-Lopez MA,
    4. et al
    . Diagnostic approach in suspected recurrent primary brain tumors using (18)FDG-PET/MRI, perfusion MRI, visual and quantitative analysis, and three dimensional stereotactic surface projections: first experience in Mexico. Rev Esp Med Nucl 2008;27:329–39
    CrossRefPubMed
  11. 11.↵
    1. McCarthy M,
    2. Yuan JB,
    3. Campbell A,
    4. et al
    . 18F-fluorodeoxyglucose positron emission tomography imaging in brain tumours: the Western Australia positron emission tomography/cyclotron service experience. J Med Imaging Radiat Oncol 2008;52:564–69
    CrossRefPubMed
  12. 12.↵
    1. Kahn D,
    2. Follett KA,
    3. Bushnell DL,
    4. et al
    . Diagnosis of recurrent brain tumor: value of 201Tl SPECT vs 18F-fluorodeoxyglucose PET. AJR Am J Roentgenol 1994;163:1459–65
    CrossRefPubMed
  13. 13.↵
    1. Thompson TP,
    2. Lunsford LD,
    3. Kondziolka D
    . Distinguishing recurrent tumor and radiation necrosis with positron emission tomography versus stereotactic biopsy. Stereotact Funct Neurosurg 1999;73:9–14
    CrossRefPubMed
  14. 14.↵
    1. Sun A,
    2. Sun L,
    3. Wang R,
    4. et al
    . Value of 18F-FDG-PET in differentiation of brain tumor recurrence from radiation necrosis after radiotherapy. [in Chinese] Chin J Med Imaging Technol 2004;20:1484–86
  15. 15.↵
    1. Santra A,
    2. Kumar R,
    3. Sharma P,
    4. et al
    . 18F-FDG-PET-CT in patients with recurrent glioma: comparison with contrast enhanced MRI. Eur J Radiol 2012;81:508–13
    CrossRefPubMed
  16. 16.↵
    1. Hong IK,
    2. Kim JH,
    3. Ra YS,
    4. et al
    . Diagnostic usefulness of 3′-deoxy-3′-[18F]fluorothymidine positron emission tomography in recurrent brain tumor. J Comput Assist Tomogr 2011;35:679–84
    CrossRefPubMed
  17. 17.↵
    1. Tan H,
    2. Chen L,
    3. Guan Y,
    4. et al
    . Comparison of MRI, 18F-FDG, and 11C-choline PET/CT for their potentials in differentiating brain tumor recurrence from brain tumor necrosis following radiotherapy. Clin Nucl Med 2011;36:978–81
    CrossRefPubMed
  18. 18.↵
    1. Enslow MS,
    2. Zollinger LV,
    3. Morton KA,
    4. et al
    . Comparison of 18F-fluorodeoxyglucose and 18F-fluorothymidine PET in differentiating radiation necrosis from recurrent glioma. Clin Nucl Med 2012;37:854–61
    CrossRefPubMed
  19. 19.↵
    1. Belohlávek O,
    2. Klener J,
    3. Vymazal J,
    4. et al
    . The diagnostics of recurrent gliomas using FDG-PET: still questionable? Nucl Med Rev Cent East Eur 2002;5:127–30
    PubMed
  20. 20.↵
    1. Spence AM,
    2. Muzi M,
    3. Link JM,
    4. et al
    . NCI-sponsored trial for the evaluation of safety and preliminary efficacy of 3′-deoxy-3′-[18F]fluorothymidine (FLT) as a marker of proliferation in patients with recurrent gliomas: preliminary efficacy studies. Mol Imaging Biol 2009;11:343–55
    CrossRefPubMed
  21. 21.↵
    1. Janus TJ,
    2. Kim EE,
    3. Tilbury R,
    4. et al
    . Use of [18F]fluorodeoxyglucose positron emission tomography in patients with primary malignant brain tumors. Ann Neurol 1993;33:540–48
    CrossRefPubMedWeb of Science
  22. 22.↵
    1. Kim YH,
    2. Oh SW,
    3. Lim YJ,
    4. et al
    . Differentiating radiation necrosis from tumor recurrence in high-grade gliomas: assessing the efficacy of 18F-FDG-PET, 11C-methionine PET and perfusion MRI. Clin Neurol Neurosurg 2010;112:758–65
    CrossRefPubMed
  23. 23.↵
    1. Cai L,
    2. Gao S,
    3. Li DC,
    4. et al
    . Value of 18F-FDG and 11C-MET PET-CT in differentiation of brain ringlike-enhanced neoplastic and non-neoplastic lesions on MRI imaging [in Chinese]. Zhonghua Zhong Liu Za Zhi 2009;31:134–38
    PubMed
  24. 24.↵
    1. Tripathi M,
    2. Sharma R,
    3. Varshney R,
    4. et al
    . Comparison of F-18 FDG and C-11 methionine PET/CT for the evaluation of recurrent primary brain tumors. Clin Nucl Med 2012;37:158–63
    CrossRefPubMed
  25. 25.↵
    1. Li DL,
    2. Xu YK,
    3. Wang QS,
    4. et al
    . 11C-methionine and 18F-fluorodeoxyglucose positron emission tomography/CT in the evaluation of patients with suspected primary and residual/recurrent gliomas. Chin Med J (Engl) 2012;125:91–96
    PubMed
  26. 26.↵
    1. Ye C,
    2. Pan M,
    3. Li Y,
    4. et al
    . 11C-MET PET/CT in the detection of recurrent cerebral glioma. [in Chinese] Chin J Stereotact Funct Neurosurg 2009;22:229–31
  27. 27.↵
    1. Hustinx R,
    2. Smith RJ,
    3. Benard F,
    4. et al
    . Can the standardized uptake value characterize primary brain tumors on FDG-PET? Eur J Nucl Med 1999;26:1501–09
    CrossRefPubMed
  28. 28.↵
    1. Jager PL,
    2. Vaalburg W,
    3. Pruim J,
    4. et al
    . Radiolabeled amino acids: basic aspects and clinical applications in oncology. J Nucl Med 2001;42:432–45
    Abstract/FREE Full Text
  29. 29.↵
    1. Chung JK,
    2. Kim YK,
    3. Kim SK,
    4. et al
    . Usefulness of 11C-methionine PET in the evaluation of brain lesions that are hypo- or isometabolic on 18F-FDG-PET. Eur J Nucl Med Mol Imaging 2002;29:176–82
    CrossRefPubMed
  30. 30.↵
    1. Nakajima T,
    2. Kumabe T,
    3. Kanamori M,
    4. et al
    . Differential diagnosis between radiation necrosis and glioma progression using sequential proton magnetic resonance spectroscopy and methionine positron emission tomography. Neurol Med Chir (Tokyo) 2009;49:394–401
    CrossRefPubMed
  31. 31.↵
    1. Nihashi T,
    2. Dahabreh IJ,
    3. Terasawa T
    . Diagnostic accuracy of PET for recurrent glioma diagnosis: a meta-analysis. AJNR Am J Neuroradiol 2013;34:944–50
    Abstract/FREE Full Text
  32. 32.↵
    1. Whiting P,
    2. Rutjes AW,
    3. Reitsma JB,
    4. et al
    . The development of QUADAS: a tool for the quality assessment of studies of diagnostic accuracy included in systematic reviews. BMC Med Res Methodol 2003;3:25
    CrossRefPubMed
  33. 33.↵
    1. Arends LR,
    2. Hamza TH,
    3. van Houwelingen JC,
    4. et al
    . Bivariate random effects meta-analysis of ROC curves. Med Decis Making 2008;28:621–38
    Abstract/FREE Full Text
  34. 34.↵
    1. Reitsma JB,
    2. Glas AS,
    3. Rutjes AW,
    4. et al
    . Bivariate analysis of sensitivity and specificity produces informative summary measures in diagnostic reviews. J Clin Epidemiol 2005;58:982–90
    CrossRefPubMedWeb of Science
  35. 35.↵
    1. Swets JA
    . Measuring the accuracy of diagnostic systems. Science 1988;240:1285–93
    Abstract/FREE Full Text
  36. 36.↵
    1. Harbord RM,
    2. Whiting P,
    3. Sterne JA,
    4. et al
    . An empirical comparison of methods for meta-analysis of diagnostic accuracy showed hierarchical models are necessary. J Clin Epidemiol 2008;61:1095–103
    CrossRefPubMedWeb of Science
  37. 37.↵
    1. Higgins JP,
    2. Thompson SG,
    3. Deeks JJ,
    4. et al
    . Measuring inconsistency in meta-analyses. BMJ 2003;327:557–60
    FREE Full Text
  38. 38.↵
    1. Higgins JP,
    2. Thompson SG
    . Quantifying heterogeneity in a meta-analysis. Stat Med 2002;21:1539–58
    CrossRefPubMedWeb of Science
  39. 39.↵
    1. Louis DN,
    2. Ohgaki H,
    3. Wiestler OD,
    4. et al
    . The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 2007;114:97–109
    CrossRefPubMedWeb of Science
  40. 40.↵
    1. Deeks JJ,
    2. Macaskill P,
    3. Irwig L
    . The performance of tests of publication bias and other sample size effects in systematic reviews of diagnostic test accuracy was assessed. J Clin Epidemiol 2005;58:882–93
    CrossRefPubMedWeb of Science
  41. 41.↵
    1. Terakawa Y,
    2. Tsuyuguchi N,
    3. Iwai Y,
    4. et al
    . Diagnostic accuracy of 11C-methionine PET for differentiation of recurrent brain tumors from radiation necrosis after radiotherapy. J Nucl Med 2008;49:694–99
    Abstract/FREE Full Text
  42. 42.↵
    1. Galldiks N,
    2. Kracht LW,
    3. Berthold F,
    4. et al
    . [11C]-L-methionine positron emission tomography in the management of children and young adults with brain tumors. J Neurooncol 2010;96:231–39
    CrossRefPubMed
  43. 43.↵
    1. Sonoda Y,
    2. Kumabe T,
    3. Takahashi T,
    4. et al
    . Clinical usefulness of 11C-MET PET and 201T1 SPECT for differentiation of recurrent glioma from radiation necrosis. Neurol Med Chir (Tokyo) 1998;38:342–47, discussion 347–48
    CrossRefPubMed
  44. 44.↵
    1. Tsuyuguchi N,
    2. Takami T,
    3. Sunada I,
    4. et al
    . Methionine positron emission tomography for differentiation of recurrent brain tumor and radiation necrosis after stereotactic radiosurgery–in malignant glioma. Ann Nucl Med 2004;18:291–96
    CrossRefPubMedWeb of Science
  45. 45.↵
    1. Chen W
    . Clinical applications of PET in brain tumors. J Nucl Med 2007;48:1468–81
    Abstract/FREE Full Text
  46. 46.↵
    1. Schiepers C,
    2. Chen W,
    3. Cloughesy T,
    4. et al
    . 18F-FDOPA kinetics in brain tumors. J Nucl Med 2007;48:1651–61
    Abstract/FREE Full Text
  47. 47.↵
    1. Floeth FW,
    2. Pauleit D,
    3. Sabel M,
    4. et al
    . Prognostic value of O-(2–18F-fluoroethyl)-L-tyrosine PET and MRI in low-grade glioma. J Nucl Med 2007;48:519–27
    Abstract/FREE Full Text
  48. 48.↵
    1. Dunet V,
    2. Rossier C,
    3. Buck A,
    4. et al
    . Performance of 18F-fluoro-ethyl-tyrosine (18F-FET) PET for the differential diagnosis of primary brain tumor: a systematic review and Metaanalysis. J Nucl Med 2012;53:207–14
    Abstract/FREE Full Text
  49. 49.↵
    1. Ozsunar Y,
    2. Mullins ME,
    3. Kwong K,
    4. et al
    . Glioma recurrence versus radiation necrosis? A pilot comparison of arterial spin-labeled, dynamic susceptibility contrast enhanced MRI, and FDG-PET imaging. Acad Radiol 2010;17:282–90
    CrossRefPubMed
  50. 50.↵
    1. Kosaka N,
    2. Tsuchida T,
    3. Uematsu H,
    4. et al
    . 18F-FDG-PET of common enhancing malignant brain tumors. AJR Am J Roentgenol 2008;190:W365–69
    CrossRefPubMedWeb of Science
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 35 (6)
American Journal of Neuroradiology
Vol. 35, Issue 6
1 Jun 2014
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
A Meta-Analysis on the Diagnostic Performance of 18F-FDG and 11C-Methionine PET for Differentiating Brain Tumors
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
C. Zhao, Y. Zhang, J. Wang
A Meta-Analysis on the Diagnostic Performance of 18F-FDG and 11C-Methionine PET for Differentiating Brain Tumors
American Journal of Neuroradiology Jun 2014, 35 (6) 1058-1065; DOI: 10.3174/ajnr.A3718

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
A Meta-Analysis on the Diagnostic Performance of 18F-FDG and 11C-Methionine PET for Differentiating Brain Tumors
C. Zhao, Y. Zhang, J. Wang
American Journal of Neuroradiology Jun 2014, 35 (6) 1058-1065; DOI: 10.3174/ajnr.A3718
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • Materials and Methods
    • Results
    • Discussion
    • Conclusions
    • Acknowledgments
    • References
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • Diagnostic Value of PET Tracers in Differentiating Glioma Tumor Recurrence from Treatment-Related Changes: A Systematic Review and Meta-Analysis
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • Multivariate Classification of Blood Oxygen Level–Dependent fMRI Data with Diagnostic Intention: A Clinical Perspective
  • Guidelines for the Ethical Use of Neuroimages in Medical Testimony: Report of a Multidisciplinary Consensus Conference
Show more METHODOLOGIC PERSPECTIVES

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire