Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Getting new auth cookie, if you see this message a lot, tell someone!
Article CommentaryNeurointervention

Toward Improving Fidelity of Computational Fluid Dynamics Simulations: Boundary Conditions Matter

Christof Karmonik
American Journal of Neuroradiology August 2014, 35 (8) 1549-1550; DOI: https://doi.org/10.3174/ajnr.A3984
Christof Karmonik
aDepartments of Neurosurgery and Translational Imaging Houston Methodist Hospital Research Institute Houston, Texas Weill Medical College of Cornell University New York, New York
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

REFERENCES

  1. 1.↵
    1. Jansen IG,
    2. Schneiders JJ,
    3. Potters WV,
    4. et al
    . Generalized versus patient-specific inflow boundary conditions in computational fluid dynamics simulations of cerebral aneurysmal hemodynamics. AJNR Am J Neuroradiol 2014;35:1543–48
    Abstract/FREE Full Text
  2. 2.↵
    1. Karmonik C,
    2. Yen C,
    3. Diaz O,
    4. et al
    . Temporal variations of wall shear stress parameters in intracranial aneurysms–importance of patient-specific inflow waveforms for CFD calculations. Acta Neurochir (Wien) 2010;152:1391–98; discussion 1398
    CrossRefPubMedWeb of Science
  3. 3.↵
    1. Karmonik C,
    2. Yen C,
    3. Grossman RG,
    4. et al
    . Intra-aneurysmal flow patterns and wall shear stresses calculated with computational flow dynamics in an anterior communicating artery aneurysm depend on knowledge of patient-specific inflow rates. Acta Neurochir (Wien) 2009;151:479–85; discussion 485
    CrossRefPubMedWeb of Science
  4. 4.↵
    1. Venugopal P,
    2. Valentino D,
    3. Schmitt H,
    4. et al
    . Sensitivity of patient-specific numerical simulation of cerebal aneurysm hemodynamics to inflow boundary conditions. J Neurosurg 2007;106:1051–60
    CrossRefPubMed
  5. 5.↵
    1. Marzo A,
    2. Singh P,
    3. Larrabide I,
    4. et al
    . Computational hemodynamics in cerebral aneurysms: the effects of modeled versus measured boundary conditions. Ann Biomed Eng 2011;39:884–96
    CrossRefPubMed
  6. 6.↵
    1. Burleson AC,
    2. Strother CM,
    3. Turitto VT
    . Computer modeling of intracranial saccular and lateral aneurysms for the study of their hemodynamics. Neurosurgery 1995;37:774–82; discussion 782–84
    CrossRefPubMed
  7. 7.↵
    1. Byrne G,
    2. Mut F,
    3. Cebral J
    . Quantifying the large-scale hemodynamics of intracranial aneurysms. AJNR Am J Neuroradiol 2014;35:333–38
    Abstract/FREE Full Text
  8. 8.↵
    1. Cebral JR,
    2. Mut F,
    3. Weir J,
    4. et al
    . Association of hemodynamic characteristics and cerebral aneurysm rupture. AJNR Am J Neuroradiol 2011;32:264–70
    Abstract/FREE Full Text
  9. 9.↵
    1. Jou LD,
    2. Lee DH,
    3. Morsi H,
    4. et al
    . Wall shear stress on ruptured and unruptured intracranial aneurysms at the internal carotid artery. AJNR Am J Neuroradiol 2008;29:1761–67
    Abstract/FREE Full Text
  10. 10.↵
    1. Jiang J,
    2. Strother C
    . Computational fluid dynamics simulations of intracranial aneurysms at varying heart rates: a “patient-specific” study. J Biomech Eng 2009;131:091001
  11. 11.↵
    1. Ford MD,
    2. Stuhne GR,
    3. Nikolov HN,
    4. et al
    . Virtual angiography for visualization and validation of computational models of aneurysm hemodynamics. IEEE Trans Med Imag 2005;24:1586–92
    CrossRefPubMedWeb of Science
  12. 12.↵
    1. Endres J,
    2. Kowarschik M,
    3. Redel T,
    4. et al
    . A workflow for patient-individualized virtual angiogram generation based on CFD simulation. Comput Math Methods Med 2012;2012:306765
    PubMed
  13. 13.↵
    1. Sun Q,
    2. Groth A,
    3. Bertram M,
    4. et al
    . Phantom-based experimental validation of computational fluid dynamics simulations on cerebral aneurysms. Med Phys 2010;37:5054–65
    CrossRefPubMed
  14. 14.↵
    1. Sun Q,
    2. Groth A,
    3. Aach T
    . Comprehensive validation of computational fluid dynamics simulations of in-vivo blood flow in patient-specific cerebral aneurysms. Med Phys 2012;39:742–54
    CrossRefPubMed
  15. 15.↵
    1. Karmonik C,
    2. Klucznik R,
    3. Benndorf G
    . Blood flow in cerebral aneurysms: comparison of phase contrast magnetic resonance and computational fluid dynamics–preliminary experience. Rofo 2008;180:209–15
    CrossRefPubMedWeb of Science
  16. 16.↵
    1. Karmonik C,
    2. Klucznik R,
    3. Benndorf G
    . Comparison of velocity patterns in an AComA aneurysm measured with 2D phase contrast MRI and simulated with CFD. Technol Health Care 2008;16:119–28
    PubMed
  17. 17.↵
    1. Boussel L,
    2. Rayz V,
    3. Martin A,
    4. et al
    . Phase-contrast magnetic resonance imaging measurements in intracranial aneurysms in vivo of flow patterns, velocity fields, and wall shear stress: comparison with computational fluid dynamics. Magn Reson Med 2009;61:409–17
    CrossRefPubMedWeb of Science
  18. 18.↵
    1. Rayz VL,
    2. Boussel L,
    3. Acevedo-Bolton G,
    4. et al
    . Numerical simulations of flow in cerebral aneurysms: comparison of CFD results and in vivo MRI measurements. J Biomed Eng 2008;130:051011
  19. 19.↵
    1. Berg P,
    2. Stucht D,
    3. Janiga G,
    4. et al
    . Cerebral blood flow in a healthy circle of Willis and two intracranial aneurysms: computational fluid dynamics versus 4D phase-contrast magnetic resonance imaging. J Biomed Eng 2014;136:041003
  20. 20.↵
    1. Jiang J,
    2. Johnson K,
    3. Valen-Sendstad K,
    4. et al
    . Flow characteristics in a canine aneurysm model: a comparison of 4D accelerated phase-contrast MR measurements and computational fluid dynamics simulations. Med Phys 2011;38:6300–12
    CrossRefPubMed
  21. 21.↵
    1. Cebral JR,
    2. Meng H
    . Counterpoint: realizing the clinical utility of computational fluid dynamics–closing the gap. AJNR Am J Neuroradiol 2012;33:396–98
    FREE Full Text
  22. 22.↵
    1. Kallmes DF
    . Point: CFD–computational fluid dynamics or confounding factor dissemination. AJNR Am J Neuroradiol 2012;33:395–96
    FREE Full Text
  23. 23.↵
    1. Strother CM,
    2. Jiang J
    . Intracranial aneurysms, cancer, x-rays, and computational fluid dynamics. AJNR Am J Neuroradiol 2012;33:991–92
    FREE Full Text
  24. 24.↵
    1. Hentschel S,
    2. Mardal KA,
    3. Lovgren AE,
    4. et al
    . Characterization of cyclic CSF flow in the foramen magnum and upper cervical spinal canal with MR flow imaging and computational fluid dynamics. AJNR Am J Neuroradiol 2010;31:997–1002
    Abstract/FREE Full Text
  25. 25.↵
    1. Linge SO,
    2. Mardal KA,
    3. Haughton V,
    4. et al
    . Simulating CSF flow dynamics in the normal and the Chiari I subarachnoid space during rest and exertion. AJNR Am J Neuroradiol 2013;34:41–45
    Abstract/FREE Full Text
  26. 26.↵
    1. Karmonik C,
    2. Chintalapani G,
    3. Redel T,
    4. et al
    . Hemodynamics at the ostium of cerebral aneurysms with relation to post-treatment changes by a virtual flow diverter: a computational fluid dynamics study. Conf Proc IEEE Eng Med Biol Soc 2013;2013:1895–98
    PubMed
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 35 (8)
American Journal of Neuroradiology
Vol. 35, Issue 8
1 Aug 2014
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Toward Improving Fidelity of Computational Fluid Dynamics Simulations: Boundary Conditions Matter
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
Christof Karmonik
Toward Improving Fidelity of Computational Fluid Dynamics Simulations: Boundary Conditions Matter
American Journal of Neuroradiology Aug 2014, 35 (8) 1549-1550; DOI: 10.3174/ajnr.A3984

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Toward Improving Fidelity of Computational Fluid Dynamics Simulations: Boundary Conditions Matter
Christof Karmonik
American Journal of Neuroradiology Aug 2014, 35 (8) 1549-1550; DOI: 10.3174/ajnr.A3984
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • REFERENCES
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • A Hemodynamic Mechanism Correlating with the Initiation of MCA Bifurcation Aneurysms
  • Subject-Specific Studies of CSF Bulk Flow Patterns in the Spinal Canal: Implications for the Dispersion of Solute Particles in Intrathecal Drug Delivery
  • Comparison of intracranial aneurysm flow quantification techniques: standard PIV vs stereoscopic PIV vs tomographic PIV vs phase-contrast MRI vs CFD
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • A Retrospective Study in Tentorial DAVFs
  • Proximal Protection Devices for Carotid Stenting
  • Rescue Reentry in Carotid Near-Occlusion
Show more NEUROINTERVENTION

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire