Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Research ArticleAdult Brain
Open Access

Accuracy of Parenchymal Cerebral Blood Flow Measurements Using Pseudocontinuous Arterial Spin-Labeling in Healthy Volunteers

K. Ambarki, A. Wåhlin, L. Zarrinkoob, R. Wirestam, J. Petr, J. Malm and A. Eklund
American Journal of Neuroradiology October 2015, 36 (10) 1816-1821; DOI: https://doi.org/10.3174/ajnr.A4367
K. Ambarki
aFrom the Department of Radiation Sciences (K.A., A.W., A.E.)
bCentre for Biomedical Engineering and Physics (K.A., A.E.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A. Wåhlin
aFrom the Department of Radiation Sciences (K.A., A.W., A.E.)
cCenter for Functional Brain Imaging (A.W., A.E.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
L. Zarrinkoob
dDepartment of Clinical Neuroscience (L.Z., J.M.), Umeå University, Umeå, Sweden
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R. Wirestam
eDepartment of Medical Radiation Physics (R.W.), Lund University, Lund, Sweden
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J. Petr
fPET Center (J.P.), Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J. Malm
dDepartment of Clinical Neuroscience (L.Z., J.M.), Umeå University, Umeå, Sweden
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A. Eklund
aFrom the Department of Radiation Sciences (K.A., A.W., A.E.)
bCentre for Biomedical Engineering and Physics (K.A., A.E.)
cCenter for Functional Brain Imaging (A.W., A.E.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

REFERENCES

  1. 1.↵
    1. Williams DS,
    2. Detre JA,
    3. Leigh JS, et al
    . Magnetic resonance imaging of perfusion using spin inversion of arterial water. Proc Natl Acad Sci U S A 1992;89:212–16 doi:10.1073/pnas.89.1.212 pmid:1729691
    Abstract/FREE Full Text
  2. 2.↵
    1. Alsop DC,
    2. Detre JA,
    3. Golay X, et al
    . Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: a consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia. Magn Reson Med 2014 Apr 8. [Epub ahead of print] doi:10.1002/mrm.25197 pmid:24715426
    CrossRefPubMed
  3. 3.↵
    1. Dai W,
    2. Garcia D,
    3. de Bazelaire C, et al
    . Continuous flow-driven inversion for arterial spin labeling using pulsed radio frequency and gradient fields. Magn Reson Med 2008;60:1488–97 doi:10.1002/mrm.21790 pmid:19025913
    CrossRefPubMedWeb of Science
  4. 4.↵
    1. Heijtel DF,
    2. Mutsaerts HJ,
    3. Bakker E, et al
    . Accuracy and precision of pseudo-continuous arterial spin labeling perfusion during baseline and hypercapnia: a head-to-head comparison with 15O H2O positron emission tomography. Neuroimage 2014;92:182–92 doi:10.1016/j.neuroimage.2014.02.011 pmid:24531046
    CrossRefPubMed
  5. 5.↵
    1. Parkes LM,
    2. Rashid W,
    3. Chard DT, et al
    . Normal cerebral perfusion measurements using arterial spin labeling: reproducibility, stability, and age and gender effects. Magn Reson Med 2004;51:736–43 doi:10.1002/mrm.20023 pmid:15065246
    CrossRefPubMedWeb of Science
  6. 6.↵
    1. Asllani I,
    2. Habeck C,
    3. Borogovac A, et al
    . Separating function from structure in perfusion imaging of the aging brain. Hum Brain Mapp 2009;30:2927–35 doi:10.1002/hbm.20719 pmid:19172645
    CrossRefPubMedWeb of Science
  7. 7.↵
    1. Biagi L,
    2. Abbruzzese A,
    3. Bianchi MC, et al
    . Age dependence of cerebral perfusion assessed by magnetic resonance continuous arterial spin labeling. J Magn Reson Imaging 2007;25:696–702 doi:10.1002/jmri.20839 pmid:17279531
    CrossRefPubMed
  8. 8.↵
    1. Chen JJ,
    2. Rosas HD,
    3. Salat DH
    . Age-associated reductions in cerebral blood flow are independent from regional atrophy. Neuroimage 2011;55:468–78 doi:10.1016/j.neuroimage.2010.12.032 pmid:21167947
    CrossRefPubMedWeb of Science
  9. 9.↵
    1. Leenders KL,
    2. Perani D,
    3. Lammertsma AA, et al
    . Cerebral blood flow, blood volume and oxygen utilization. Normal values and effect of age. Brain 1990;113:27–47 doi:10.1093/brain/113.1.27 pmid:2302536
    Abstract/FREE Full Text
  10. 10.↵
    1. Slosman DO,
    2. Chicherio C,
    3. Ludwig C, et al
    . (133)Xe SPECT cerebral blood flow study in a healthy population: determination of T-scores. J Nucl Med 2001;42:864–70 pmid:11390549
    Abstract/FREE Full Text
  11. 11.↵
    1. Meltzer CC,
    2. Cantwell MN,
    3. Greer PJ, et al
    . Does cerebral blood flow decline in healthy aging? A PET study with partial-volume correction. J Nucl Med 2000;41:1842–48 pmid:11079492
    Abstract/FREE Full Text
  12. 12.↵
    1. Aanerud J,
    2. Borghammer P,
    3. Chakravarty MM, et al
    . Brain energy metabolism and blood flow differences in healthy aging. J Cereb Blood Flow Metab 2012;32:1177–87 doi:10.1038/jcbfm.2012.18 pmid:22373642
    CrossRefPubMed
  13. 13.↵
    1. Aslan S,
    2. Xu F,
    3. Wang PL, et al
    . Estimation of labeling efficiency in pseudocontinuous arterial spin labeling. Magn Reson Med 2010;63:765–71 doi:10.1002/mrm.22245 pmid:20187183
    CrossRefPubMedWeb of Science
  14. 14.↵
    1. Wåhlin A,
    2. Ambarki K,
    3. Hauksson J, et al
    . Phase contrast MRI quantification of pulsatile volumes of brain arteries, veins, and cerebrospinal fluids compartments: repeatability and physiological interactions. J Magn Reson Imaging 2012;35:1055–62 doi:10.1002/jmri.23527 pmid:22170792
    CrossRefPubMed
  15. 15.↵
    1. Valverde S,
    2. Oliver A,
    3. Cabezas M, et al
    . Comparison of 10 brain tissue segmentation methods using revisited IBSR annotations. J Magn Reson Imaging 2015;41:93–101 doi:10.1002/jmri.24517 pmid:24459099
    CrossRefPubMed
  16. 16.↵
    1. Folstein MF,
    2. Folstein SE,
    3. McHugh PR
    . “Mini-mental state.” A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 1975;12:189–98 doi:10.1016/0022-3956(75)90026-6 pmid:1202204
    CrossRefPubMedWeb of Science
  17. 17.↵
    1. Pienaar R,
    2. Paldino MJ,
    3. Madan N, et al
    . A quantitative method for correlating observations of decreased apparent diffusion coefficient with elevated cerebral blood perfusion in newborns presenting cerebral ischemic insults. Neuroimage 2012;63:1510–18 doi:10.1016/j.neuroimage.2012.07.062 pmid:22892333
    CrossRefPubMed
  18. 18.↵
    1. Järnum H,
    2. Steffensen EG,
    3. Knutsson L, et al
    . Perfusion MRI of brain tumours: a comparative study of pseudo-continuous arterial spin labelling and dynamic susceptibility contrast imaging. Neuroradiology 2010;52:307–17 doi:10.1007/s00234-009-0616-6 pmid:19841916
    CrossRefPubMedWeb of Science
  19. 19.↵
    1. Mutsaerts HJ,
    2. Steketee RM,
    3. Heijtel DF, et al
    . Inter-vendor reproducibility of pseudo-continuous arterial spin labeling at 3 Tesla. PLoS One 2014;9:e104108 doi:10.1371/journal.pone.0104108 pmid:25090654
    CrossRefPubMed
  20. 20.↵
    1. Melzer TR,
    2. Watts R,
    3. MacAskill MR, et al
    . Arterial spin labelling reveals an abnormal cerebral perfusion pattern in Parkinson's disease. Brain 2011;134:845–55 doi:10.1093/brain/awq377 pmid:21310726
    Abstract/FREE Full Text
  21. 21.↵
    1. Rajapakse JC,
    2. Giedd JN,
    3. Rapoport JL
    . Statistical approach to segmentation of single-channel cerebral MR images. IEEE Trans Med Imaging 1997;16:176–86 doi:10.1109/42.563663 pmid:9101327
    CrossRefPubMedWeb of Science
  22. 22.↵
    1. Buxton RB,
    2. Frank LR,
    3. Wong EC, et al
    . A general kinetic model for quantitative perfusion imaging with arterial spin labeling. Magn Reson Med 1998;40:383–96 doi:10.1002/mrm.1910400308 pmid:9727941
    CrossRefPubMedWeb of Science
  23. 23.↵
    1. Torack RM,
    2. Alcala H,
    3. Gado M, et al
    . Correlative assay of computerized cranial tomography CCT, water content and specific gravity in normal and pathological postmortem brain. J Neuropathol Exp Neurol 1976;35:385–92 doi:10.1097/00005072-197607000-00001 pmid:932786
    CrossRefPubMed
  24. 24.↵
    1. Bland JM,
    2. Altman DG
    . Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986;1:307–10 pmid:2868172
    CrossRefPubMedWeb of Science
  25. 25.↵
    1. Bron EE,
    2. Steketee RM,
    3. Houston GC, et al
    ; Alzheimer's Disease Neuroimaging Initiative. Diagnostic classification of arterial spin labeling and structural MRI in presenile early stage dementia. Hum Brain Mapp 2014;35:4916–31 doi:10.1002/hbm.22522 pmid:24700485
    CrossRefPubMed
  26. 26.↵
    1. Jain V,
    2. Duda J,
    3. Avants B, et al
    . Longitudinal reproducibility and accuracy of pseudo-continuous arterial spin-labeled perfusion MR imaging in typically developing children. Radiology 2012;263:527–36 doi:10.1148/radiol.12111509 pmid:22517961
    CrossRefPubMedWeb of Science
  27. 27.↵
    1. van Golen LW,
    2. Kuijer JP,
    3. Huisman MC, et al
    . Quantification of cerebral blood flow in healthy volunteers and type 1 diabetic patients: comparison of MRI arterial spin labeling and [(15)O]H2O positron emission tomography (PET). J Magn Reson Imaging 2014;40:1300–09 doi:10.1002/jmri.24484 pmid:24214919
    CrossRefPubMed
  28. 28.↵
    1. Zhang K,
    2. Herzog H,
    3. Mauler J, et al
    . Comparison of cerebral blood flow acquired by simultaneous [15O]water positron emission tomography and arterial spin labeling magnetic resonance imaging. J Cereb Blood Flow Metab 2014;34:1373–80 doi:10.1038/jcbfm.2014.92 pmid:24849665
    CrossRefPubMed
  29. 29.↵
    1. Henriksen OM,
    2. Larsson HB,
    3. Hansen AE, et al
    . Estimation of intersubject variability of cerebral blood flow measurements using MRI and positron emission tomography. J Magn Reson Imaging 2012;35:1290–99 doi:10.1002/jmri.23579 pmid:22246715
    CrossRefPubMed
  30. 30.↵
    1. Kety SS
    . Human cerebral blood flow and oxygen consumption as related to aging. J Chronic Dis 1956;3:478–86 doi:10.1016/0021-9681(56)90146-1 pmid:13306754
    CrossRefPubMed
  31. 31.↵
    1. Good CD,
    2. Johnsrude IS,
    3. Ashburner J, et al
    . A voxel-based morphometric study of ageing in 465 normal adult human brains. Neuroimage 2001;14:21–36 doi:10.1006/nimg.2001.0786 pmid:11525331
    CrossRefPubMedWeb of Science
  32. 32.↵
    1. Scheel P,
    2. Ruge C,
    3. Schöning M
    . Flow velocity and flow volume measurements in the extracranial carotid and vertebral arteries in healthy adults: reference data and the effects of age. Ultrasound Med Biol 2000;26:1261–66 doi:10.1016/S0301-5629(00)00293-3 pmid:11120363
    CrossRefPubMedWeb of Science
  33. 33.↵
    1. Cho S,
    2. Jones D,
    3. Reddick WE, et al
    . Establishing norms for age-related changes in proton T1 of human brain tissue in vivo. Magn Reson Imaging 1997;15:1133–43 doi:10.1016/S0730-725X(97)00202-6 pmid:9408134
    CrossRefPubMedWeb of Science
  34. 34.↵
    1. Breger RK,
    2. Yetkin FZ,
    3. Fischer ME, et al
    . T1 and T2 in the cerebrum: correlation with age, gender, and demographic factors. Radiology 1991;181:545–47 doi:10.1148/radiology.181.2.1924802 pmid:1924802
    CrossRefPubMed
  35. 35.↵
    1. Herscovitch P,
    2. Raichle ME
    . What is the correct value for the brain–blood partition coefficient for water? J Cereb Blood Flow Metab 1985;5:65–69 doi:10.1038/jcbfm.1985.9 pmid:3871783
    CrossRefPubMedWeb of Science
  36. 36.↵
    1. Esposito G,
    2. Van Horn JD,
    3. Weinberger DR, et al
    . Gender differences in cerebral blood flow as a function of cognitive state with PET. J Nucl Med 1996;37:559–64 pmid:8691239
    Abstract/FREE Full Text
  37. 37.↵
    1. Varela M,
    2. Hajnal JV,
    3. Petersen ET, et al
    . A method for rapid in vivo measurement of blood T1. NMR Biomed 2011;24:80–88 doi:10.1002/nbm.1559 pmid:20669148
    CrossRefPubMed
  38. 38.↵
    1. Wu WC,
    2. Jain V,
    3. Li C, et al
    . In vivo venous blood T1 measurement using inversion recovery true-FISP in children and adults. Magn Reson Med 2010;64:1140–47 doi:10.1002/mrm.22484 pmid:20564586
    CrossRefPubMed
  39. 39.↵
    1. Qin Q,
    2. Strouse JJ,
    3. van Zijl PC
    . Fast measurement of blood T1 in the human jugular vein at 3 Tesla. Magn Reson Med 2011;65:1297–304 doi:10.1002/mrm.22723 pmid:21500258
    CrossRefPubMed
  40. 40.↵
    1. Piechnik SK,
    2. Ferreira VM,
    3. Lewandowski AJ, et al
    . Normal variation of magnetic resonance T1 relaxation times in the human population at 1.5 T using ShMOLLI. J Cardiovasc Magn Reson 2013;15:13 doi:10.1186/1532-429X-15-13 pmid:23331520
    CrossRefPubMed
  41. 41.↵
    1. Bullitt E,
    2. Zeng D,
    3. Mortamet B, et al
    . The effects of healthy aging on intracerebral blood vessels visualized by magnetic resonance angiography. Neurobiol Aging 2010;31:290–300 doi:10.1016/j.neurobiolaging.2008.03.022 pmid:18471935
    CrossRefPubMed
  42. 42.↵
    1. Zhao M,
    2. Charbel FT,
    3. Alperin N, et al
    . Improved phase-contrast flow quantification by three-dimensional vessel localization. Magn Reson Imaging 2000;18:697–706 doi:10.1016/S0730-725X(00)00157-0 pmid:10930779
    CrossRefPubMedWeb of Science
  43. 43.↵
    1. Sheehy NP,
    2. Boyle GE,
    3. Meaney JF
    . Normal anterior spinal arteries within the cervical region: high-spatial-resolution contrast-enhanced three-dimensional MR angiography. Radiology 2005;236:637–41 doi:10.1148/radiol.2362040804 pmid:15972334
    CrossRefPubMedWeb of Science
  44. 44.↵
    1. Ambarki K,
    2. Hallberg P,
    3. Jóhannesson G, et al
    . Blood flow of ophthalmic artery in healthy individuals determined by phase-contrast magnetic resonance imaging. Invest Ophthalmol Vis Sci 2013;54:2738–45 doi:10.1167/iovs.13-11737 pmid:23518769
    Abstract/FREE Full Text
  45. 45.↵
    1. van Osch MJ,
    2. Teeuwisse WM,
    3. van Walderveen MA, et al
    . Can arterial spin labeling detect white matter perfusion signal? Magn Reson Med 2009;62:165–73 doi:10.1002/mrm.22002 pmid:19365865
    CrossRefPubMed
  46. 46.↵
    1. Pohmann R
    . Accurate, localized quantification of white matter perfusion with single-voxel ASL. Magn Reson Med 2010;64:1109–13 doi:10.1002/mrm.22476 pmid:20535809
    CrossRefPubMed
  47. 47.↵
    1. Lu K,
    2. Liu T,
    3. Wong EC, et al
    . Regional white matter perfusion measurement using an optimized pseudo-continuous ASL MRI. In: Proceedings of the 17th Annual Meeting of the International Society of Magnetic Resonance in Medicine [abstract 4401]. Honolulu, Hawaii. April 18–24, 2009
  48. 48.↵
    1. Garcia DM,
    2. Duhamel G,
    3. Alsop DC
    . Efficiency of inversion pulses for background suppressed arterial spin labeling. Magn Reson Med 2005;54:366–72 doi:10.1002/mrm.20556 pmid:16032674
    CrossRefPubMedWeb of Science
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 36 (10)
American Journal of Neuroradiology
Vol. 36, Issue 10
1 Oct 2015
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Accuracy of Parenchymal Cerebral Blood Flow Measurements Using Pseudocontinuous Arterial Spin-Labeling in Healthy Volunteers
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
K. Ambarki, A. Wåhlin, L. Zarrinkoob, R. Wirestam, J. Petr, J. Malm, A. Eklund
Accuracy of Parenchymal Cerebral Blood Flow Measurements Using Pseudocontinuous Arterial Spin-Labeling in Healthy Volunteers
American Journal of Neuroradiology Oct 2015, 36 (10) 1816-1821; DOI: 10.3174/ajnr.A4367

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Accuracy of Parenchymal Cerebral Blood Flow Measurements Using Pseudocontinuous Arterial Spin-Labeling in Healthy Volunteers
K. Ambarki, A. Wåhlin, L. Zarrinkoob, R. Wirestam, J. Petr, J. Malm, A. Eklund
American Journal of Neuroradiology Oct 2015, 36 (10) 1816-1821; DOI: 10.3174/ajnr.A4367
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • Materials and Methods
    • Results
    • Discussion
    • Conclusions
    • APPENDIX
    • Footnotes
    • REFERENCES
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • ExploreASL: an image processing pipeline for multi-center ASL perfusion MRI studies
  • Arterial Spin-Labeling Perfusion MR Imaging Demonstrates Regional CBF Decrease in Idiopathic Normal Pressure Hydrocephalus
  • In Vivo T1 of Blood Measurements in Children with Sickle Cell Disease Improve Cerebral Blood Flow Quantification from Arterial Spin-Labeling MRI
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • Diagnostic Neuroradiology of Monoclonal Antibodies
  • Clinical Outcomes After Chiari I Decompression
  • Segmentation of Brain Metastases with BLAST
Show more Adult Brain

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire