Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Research ArticleADULT BRAIN
Open Access

On the Use of DSC-MRI for Measuring Vascular Permeability

J.T. Skinner, P.L. Moots, G.D. Ayers and C.C. Quarles
American Journal of Neuroradiology January 2016, 37 (1) 80-87; DOI: https://doi.org/10.3174/ajnr.A4478
J.T. Skinner
aFrom the Vanderbilt University Institute of Imaging Science (J.T.S., C.C.Q.)
dDepartments of Radiology and Radiological Sciences (J.T.S., C.C.Q.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P.L. Moots
eNeurology (P.L.M.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
G.D. Ayers
fBiostatistics (G.D.A.), Vanderbilt University School of Medicine, Nashville, Tennessee.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C.C. Quarles
aFrom the Vanderbilt University Institute of Imaging Science (J.T.S., C.C.Q.)
bDepartments of Cancer Biology (C.C.Q.)
cBiomedical Engineering (C.C.Q.), Vanderbilt University, Nashville, Tennessee
dDepartments of Radiology and Radiological Sciences (J.T.S., C.C.Q.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Shubik P
    . Vascularization of tumors: a review. J Cancer Res Clin Oncol 1982;103:211–26 doi:10.1007/BF00409698 pmid:6181069
    CrossRefPubMed
  2. 2.↵
    1. Boxerman JL,
    2. Schmainda KM,
    3. Weisskoff RM
    . Relative cerebral blood volume maps corrected for contrast agent extravasation significantly correlate with glioma tumor grade, whereas uncorrected maps do not. AJNR Am J Neuroradiol 2006;27:859–67 pmid:16611779
    Abstract/FREE Full Text
  3. 3.↵
    1. Paulson ES,
    2. Schmainda KM
    . Comparison of dynamic susceptibility-weighted contrast-enhanced MR methods: recommendations for measuring relative cerebral blood volume in brain tumors. Radiology 2008;249:601–13 doi:10.1148/radiol.2492071659 pmid:18780827
    CrossRefPubMedWeb of Science
  4. 4.↵
    1. Quarles CC,
    2. Gochberg DF,
    3. Gore JC, et al
    . A theoretical framework to model DSC-MRI data acquired in the presence of contrast agent extravasation. Phys Med Biol 2009;54:5749–66 doi:10.1088/0031-9155/54/19/006 pmid:19729712
    CrossRefPubMed
  5. 5.↵
    1. Schmainda KM,
    2. Prah M,
    3. Connelly J, et al
    . Dynamic-susceptibility contrast agent MRI measures of relative cerebral blood volume predict response to bevacizumab in recurrent high-grade glioma. Neuro Oncol 2014;16:880–88 doi:10.1093/neuonc/not216 pmid:24431219
    Abstract/FREE Full Text
  6. 6.↵
    1. Paulson E,
    2. Prah DE,
    3. Schmainda KM
    . Compensation of confounding T1 and T2 dipolar and residual susceptibility effects in DSC-MRI using dual-echo SPIRAL. In: Proceedings of the Annual Meeting of the International Society for Magnetic Resonance in Medicine, Berlin, Germany. May 19–25, 2007:2811
  7. 7.↵
    1. Weisskoff RM,
    2. Boxerman JL,
    3. Sorensen AG
    . Simultaneous blood volume and permeability mapping using a single Gd-based contrast agent. In: Proceedings of the Annual Meeting of the International Society for Magnetic Resonance in Medicine, San Francisco, California. August 6–12, 1994:279
  8. 8.↵
    1. Liu HL,
    2. Wu YY,
    3. Yang WS, et al
    . Is Weisskoff model valid for the correction of contrast agent extravasation with combined T1 and T2* effects in dynamic susceptibility contrast MRI? Med Phys 2011;38:802–09 doi:10.1118/1.3534197 pmid:21452717
    CrossRefPubMed
  9. 9.↵
    1. Quarles CC,
    2. Ward BD,
    3. Schmainda KM
    . Improving the reliability of obtaining tumor hemodynamic parameters in the presence of contrast agent extravasation. Magn Reson Med 2005;53:1307–16 doi:10.1002/mrm.20497 pmid:15906288
    CrossRefPubMedWeb of Science
  10. 10.↵
    1. Bjornerud A,
    2. Sorensen AG,
    3. Mouridsen K, et al
    . T1- and T2*-dominant extravasation correction in DSC-MRI: part I—theoretical considerations and implications for assessment of tumor hemodynamic properties. J Cereb Blood Flow Metab 2011;31:2041–53 doi:10.1038/jcbfm.2011.52 pmid:21505483
    Abstract/FREE Full Text
  11. 11.↵
    1. Emblem KE,
    2. Bjornerud A,
    3. Mouridsen K, et al
    . T(1)- and T(2)(*)-dominant extravasation correction in DSC-MRI: part II—predicting patient outcome after a single dose of cediranib in recurrent glioblastoma patients. J Cereb Blood Flow Metab 2011;31:2054–64 doi:10.1038/jcbfm.2011.39 pmid:21505476
    Abstract/FREE Full Text
  12. 12.↵
    1. Vonken EJ,
    2. van Osch MJ,
    3. Bakker CJ, et al
    . Measurement of cerebral perfusion with dual-echo multi-slice quantitative dynamic susceptibility contrast MRI. J Magn Reson Imaging 1999;10:109–17 pmid:10441012
    CrossRefPubMed
  13. 13.↵
    1. Miyati T,
    2. Banno T,
    3. Mase M, et al
    . Dual dynamic contrast-enhanced MR imaging. J Magn Reson Imaging 1997;7:230–35 doi:10.1002/jmri.1880070136 pmid:9039621
    CrossRefPubMed
  14. 14.↵
    1. Uematsu H,
    2. Maeda M,
    3. Sadato N, et al
    . Blood volume of gliomas determined by double-echo dynamic perfusion-weighted MR imaging: a preliminary study. AJNR Am J Neuroradiol 2001;22:1915–19 pmid:11733325
    Abstract/FREE Full Text
  15. 15.↵
    1. Vonken EP,
    2. van Osch MJ,
    3. Bakker CJ, et al
    . Simultaneous quantitative cerebral perfusion and Gd-DTPA extravasation measurement with dual-echo dynamic susceptibility contrast MRI. Magn Reson Med 2000;43:820–27 pmid:10861876
    CrossRefPubMedWeb of Science
  16. 16.↵
    1. Quarles CC,
    2. Gore JC,
    3. Xu L, et al
    . Comparison of dual-echo DSC-MRI- and DCE-MRI-derived contrast agent kinetic parameters. Magn Reson Imaging 2012;30:944–53 doi:10.1016/j.mri.2012.03.008 pmid:22617148
    CrossRefPubMed
  17. 17.↵
    1. Skinner JT,
    2. Robison RK,
    3. Elder CP, et al
    . Evaluation of a multiple spin- and gradient-echo (SAGE) EPI acquisition with SENSE acceleration: applications for perfusion imaging in and outside the brain. Magn Reson Imaging 2014;32:1171–80 doi:10.1016/j.mri.2014.08.032 pmid:25179133
    CrossRefPubMed
  18. 18.↵
    1. Tofts PS
    . Modeling tracer kinetics in dynamic Gd-DTPA MR imaging. J Magn Reson Imaging 1997;7:91–101 doi:10.1002/jmri.1880070113 pmid:9039598
    CrossRefPubMedWeb of Science
  19. 19.↵
    1. Tofts PS,
    2. Brix G,
    3. Buckley DL, et al
    . Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging 1999;10:223–32 pmid:10508281
    CrossRefPubMedWeb of Science
  20. 20.↵
    1. Schmiedeskamp H,
    2. Andre JB,
    3. Straka M, et al
    . Simultaneous perfusion and permeability measurements using combined spin- and gradient-echo MRI. J Cereb Blood Flow Metab 2013;33:732–43 doi:10.1038/jcbfm.2013.10 pmid:23462570
    Abstract/FREE Full Text
  21. 21.↵
    1. Zhang N,
    2. Zhang L,
    3. Qiu B, et al
    . Correlation of volume transfer coefficient Ktrans with histopathologic grades of gliomas. J Magn Reson Imaging 2012;36:355–63 doi:10.1002/jmri.23675 pmid:22581762
    CrossRefPubMed
  22. 22.↵
    1. Cha S,
    2. Yang L,
    3. Johnson G, et al
    . Comparison of microvascular permeability measurements, K(trans), determined with conventional steady-state T1-weighted and first-pass T2*-weighted MR imaging methods in gliomas and meningiomas. AJNR Am J Neuroradiol 2006;27:409–17 pmid:16484420
    Abstract/FREE Full Text
  23. 23.↵
    1. Ah-See ML,
    2. Makris A,
    3. Taylor NJ, et al
    . Early changes in functional dynamic magnetic resonance imaging predict for pathologic response to neoadjuvant chemotherapy in primary breast cancer. Clin Cancer Res 2008;14:6580–89 doi:10.1158/1078-0432.CCR-07-4310 pmid:18927299
    Abstract/FREE Full Text
  24. 24.↵
    1. George ML,
    2. Dzik-Jurasz AS,
    3. Padhani AR, et al
    . Non-invasive methods of assessing angiogenesis and their value in predicting response to treatment in colorectal cancer. Br J Surg 2001;88:1628–36 doi:10.1046/j.0007-1323.2001.01947.x pmid:11736977
    CrossRefPubMedWeb of Science
  25. 25.↵
    1. Armitage PA,
    2. Schwindack C,
    3. Bastin ME, et al
    . Quantitative assessment of intracranial tumor response to dexamethasone using diffusion, perfusion and permeability magnetic resonance imaging. Magn Reson Imaging 2007;25:303–10 doi:10.1016/j.mri.2006.09.002 pmid:17371718
    CrossRefPubMedWeb of Science
  26. 26.↵
    1. Batchelor TT,
    2. Sorensen AG,
    3. di Tomaso E, et al
    . AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell 2007;11:83–95 doi:10.1016/j.ccr.2006.11.021 pmid:17222792
    CrossRefPubMedWeb of Science
  27. 27.↵
    1. Toh CH,
    2. Wei KC,
    3. Chang CN, et al
    . Differentiation of primary central nervous system lymphomas and glioblastomas: comparisons of diagnostic performance of dynamic susceptibility contrast-enhanced perfusion MR imaging without and with contrast-leakage correction. AJNR Am J Neuroradiol 2013;34:1145–49 doi:10.3174/ajnr.A3383 pmid:23348763
    Abstract/FREE Full Text
  28. 28.↵
    1. Provenzale JM,
    2. Wang GR,
    3. Brenner T, et al
    . Comparison of permeability in high-grade and low-grade brain tumors using dynamic susceptibility contrast MR imaging. AJR Am J Roentgenol 2002;178:711–16 doi:10.2214/ajr.178.3.1780711 pmid:11856703
    CrossRefPubMedWeb of Science
  29. 29.↵
    1. Donahue KM,
    2. Krouwer HG,
    3. Rand SD, et al
    . Utility of simultaneously acquired gradient-echo and spin-echo cerebral blood volume and morphology maps in brain tumor patients. Magn Reson Med 2000;43:845–53 pmid:10861879
    CrossRefPubMedWeb of Science
  30. 30.↵
    1. Bonekamp D,
    2. Deike K,
    3. Wiestler B, et al
    . Association of overall survival in patients with newly diagnosed glioblastoma with contrast-enhanced perfusion MRI: comparison of intraindividually matched T1- and T2 (*)-based bolus techniques. J Magn Reson Imaging 2015;42:87–96 doi:10.1002/jmri.24756 pmid:25244574
    CrossRefPubMed
  31. 31.↵
    1. Schmiedeskamp H,
    2. Straka M,
    3. Newbould RD, et al
    . Combined spin- and gradient-echo perfusion-weighted imaging. Magn Reson Med 2012;68:30–40 doi:10.1002/mrm.23195 pmid:22114040
    CrossRefPubMed
  32. 32.↵
    1. Carroll TJ,
    2. Rowley HA,
    3. Haughton VM
    . Automatic calculation of the arterial input function for cerebral perfusion imaging with MR imaging. Radiology 2003;227:593–600 doi:10.1148/radiol.2272020092 pmid:12663823
    CrossRefPubMedWeb of Science
  33. 33.↵
    1. Newton AT,
    2. Skinner JT,
    3. Quarles CC
    . Automatic AIF estimation in multi-echo DSC-MRI of pediatric patieints: avoiding the noise floor. In: Proceedings of the Annual Meeting of the International Society for Magnetic Resonance in Medicine, Salt Lake City, Utah. April 20–26, 2013
  34. 34.↵
    1. Liu HL,
    2. Pu Y,
    3. Liu Y, et al
    . Cerebral blood flow measurement by dynamic contrast MRI using singular value decomposition with an adaptive threshold. Magn Reson Med 1999;42:167–72 pmid:10398963
    CrossRefPubMed
  35. 35.↵
    1. Kuperman VY,
    2. Karczmar GS,
    3. Blomley MJ, et al
    . Differentiating between T1 and T2* changes caused by gadopentetate dimeglumine in the kidney by using a double-echo dynamic MR imaging sequence. J Magn Reson Imaging 1996;6:764–68 doi:10.1002/jmri.1880060509 pmid:8890014
    CrossRefPubMed
  36. 36.↵
    1. Landis CS,
    2. Li X,
    3. Telang FW, et al
    . Determination of the MRI contrast agent concentration time course in vivo following bolus injection: effect of equilibrium transcytolemmal water exchange. Magn Reson Med 2000;44:563–74 pmid:11025512
    CrossRefPubMed
  37. 37.↵
    1. Skinner JT,
    2. Yankeelov TE,
    3. Peterson TE, et al
    . Comparison of dynamic contrast-enhanced MRI and quantitative SPECT in a rat glioma model. Contrast Media Mol Imaging 2012;7:494–500 doi:10.1002/cmmi.1479 pmid:22991315
    CrossRefPubMed
  38. 38.↵
    1. Mills SJ,
    2. Patankar TA,
    3. Haroon HA, et al
    . Do cerebral blood volume and contrast transfer coefficient predict prognosis in human glioma? AJNR Am J Neuroradiol 2006;27:853–58 pmid:16611778
    Abstract/FREE Full Text
  39. 39.↵
    1. Liu Y,
    2. Ding W,
    3. Bensheng Q
    . Extravascular extracellular space fraction measurement by DSC-MRI: a theoretical study. In: Proceedings of the Annual Meeting of the International Society for Magnetic Resonance in Medicine and European Society for Magnetic Resonance in Medicine, Milan, Italy. May 10–16, 2014
  40. 40.↵
    1. Semmineh NB,
    2. Xu J,
    3. Boxerman JL, et al
    . An efficient computational approach to characterize DSC-MRI signals arising from three-dimensional heterogeneous tissue structures. PLoS One 2014;9:e84764 doi:10.1371/journal.pone.0084764 pmid:24416281
    CrossRefPubMed
  41. 41.↵
    1. Semmineh NB,
    2. Xu J,
    3. Skinner JT, et al
    . Assessing tumor cytoarchitecture using multiecho DSC-MRI derived measures of the transverse relaxivity at tracer equilibrium (TRATE). Magn Reson Med 2015;74:772–84 doi:10.1002/mrm.25435 pmid:25227668
    CrossRefPubMed
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 37 (1)
American Journal of Neuroradiology
Vol. 37, Issue 1
1 Jan 2016
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
On the Use of DSC-MRI for Measuring Vascular Permeability
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
J.T. Skinner, P.L. Moots, G.D. Ayers, C.C. Quarles
On the Use of DSC-MRI for Measuring Vascular Permeability
American Journal of Neuroradiology Jan 2016, 37 (1) 80-87; DOI: 10.3174/ajnr.A4478

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
On the Use of DSC-MRI for Measuring Vascular Permeability
J.T. Skinner, P.L. Moots, G.D. Ayers, C.C. Quarles
American Journal of Neuroradiology Jan 2016, 37 (1) 80-87; DOI: 10.3174/ajnr.A4478
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • Materials and Methods
    • Results
    • Discussion
    • Conclusions
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Blood-Brain Barrier Permeability and Kinetics of Inflammatory Markers in Acute Stroke Patients Treated With Thrombectomy
  • Sex-specific differences in white matter microvascular integrity after ischaemic stroke
  • Prognostic Predictions for Patients with Glioblastoma after Standard Treatment: Application of Contrast Leakage Information from DSC-MRI within Nonenhancing FLAIR High-Signal-Intensity Lesions
  • Clinical Value of Vascular Permeability Estimates Using Dynamic Susceptibility Contrast MRI: Improved Diagnostic Performance in Distinguishing Hypervascular Primary CNS Lymphoma from Glioblastoma
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • Diagnostic Neuroradiology of Monoclonal Antibodies
  • Cerebral ADC Changes in Fabry Disease
  • ML for Glioma Molecular Subtype Prediction
Show more Adult Brain

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire