Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Research ArticleSpine Imaging and Spine Image-Guided Interventions
Open Access

Clinically Feasible Microstructural MRI to Quantify Cervical Spinal Cord Tissue Injury Using DTI, MT, and T2*-Weighted Imaging: Assessment of Normative Data and Reliability

A.R. Martin, B. De Leener, J. Cohen-Adad, D.W. Cadotte, S. Kalsi-Ryan, S.F. Lange, L. Tetreault, A. Nouri, A. Crawley, D.J. Mikulis, H. Ginsberg and M.G. Fehlings
American Journal of Neuroradiology June 2017, 38 (6) 1257-1265; DOI: https://doi.org/10.3174/ajnr.A5163
A.R. Martin
aFrom the Division of Neurosurgery, Department of Surgery (A.R.M., D.W.C., S.K.-R., L.T., A.N., H.G., M.G.F.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for A.R. Martin
B. De Leener
cPolytechnique Montreal (B.D.L., J.C.-A.), Montréal, Quebec, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for B. De Leener
J. Cohen-Adad
cPolytechnique Montreal (B.D.L., J.C.-A.), Montréal, Quebec, Canada
dFunctional Neuroimaging Unit (J.C.-A.), Centre de recherche de l'Institut universitaire de gériatrie de Montréal, Université de Montréal, Montréal, Quebec, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for J. Cohen-Adad
D.W. Cadotte
aFrom the Division of Neurosurgery, Department of Surgery (A.R.M., D.W.C., S.K.-R., L.T., A.N., H.G., M.G.F.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for D.W. Cadotte
S. Kalsi-Ryan
aFrom the Division of Neurosurgery, Department of Surgery (A.R.M., D.W.C., S.K.-R., L.T., A.N., H.G., M.G.F.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for S. Kalsi-Ryan
S.F. Lange
eUniversity of Groningen (S.F.L.), Groningen, the Netherlands.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for S.F. Lange
L. Tetreault
aFrom the Division of Neurosurgery, Department of Surgery (A.R.M., D.W.C., S.K.-R., L.T., A.N., H.G., M.G.F.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for L. Tetreault
A. Nouri
aFrom the Division of Neurosurgery, Department of Surgery (A.R.M., D.W.C., S.K.-R., L.T., A.N., H.G., M.G.F.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for A. Nouri
A. Crawley
bDepartment of Medical Imaging (A.C., D.J.M.), University of Toronto and the University Health Network, Toronto Western Hospital, Toronto, Ontario, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for A. Crawley
D.J. Mikulis
bDepartment of Medical Imaging (A.C., D.J.M.), University of Toronto and the University Health Network, Toronto Western Hospital, Toronto, Ontario, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for D.J. Mikulis
H. Ginsberg
aFrom the Division of Neurosurgery, Department of Surgery (A.R.M., D.W.C., S.K.-R., L.T., A.N., H.G., M.G.F.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for H. Ginsberg
M.G. Fehlings
aFrom the Division of Neurosurgery, Department of Surgery (A.R.M., D.W.C., S.K.-R., L.T., A.N., H.G., M.G.F.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for M.G. Fehlings
  • Article
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Wheeler-Kingshott CA,
    2. Stroman PW,
    3. Schwab JM, et al
    . The current state-of-the-art of spinal cord: applications. Neuroimage 2014;84:1082–93 doi:10.1016/j.neuroimage.2013.07.014 pmid:23859923
    CrossRefPubMedWeb of Science
  2. 2.↵
    1. Stroman PW,
    2. Wheeler-Kingshott C,
    3. Bacon M, et al
    . The current state-of-the-art of spinal cord imaging: methods. Neuroimage 2014;84:1070–81 doi:10.1016/j.neuroimage.2013.04.124 pmid:23685159
    CrossRefPubMedWeb of Science
  3. 3.↵
    1. Martin AR,
    2. Aleksanderek I,
    3. Cohen-Adad J, et al
    . Translating state-of-the-art spinal cord MRI techniques to clinical use: a systematic review of clinical studies utilizing DTI, MT, MWF, MRS, and fMRI. Neuroimage Clin 2016;10:192–238 doi:10.1016/j.nicl.2015.11.019 pmid:26862478
    CrossRefPubMed
  4. 4.↵
    1. Uda T,
    2. Takami T,
    3. Tsuyuguchi N, et al
    . Assessment of cervical spondylotic myelopathy using diffusion tensor magnetic resonance imaging parameter at 3.0 Tesla. Spine 2013;38:407–14 doi:10.1097/BRS.0b013e31826f25a3 pmid:22914703
    CrossRefPubMed
  5. 5.↵
    1. Mamata H,
    2. Jolesz FA,
    3. Maier SE
    . Apparent diffusion coefficient and fractional anisotropy in spinal cord: age and cervical spondylosis-related changes. J Magn Reson Imaging 2005;22:38–43 doi:10.1002/jmri.20357 pmid:15971186
    CrossRefPubMed
  6. 6.↵
    1. Budzik JF,
    2. Balbi V,
    3. Le Thuc V, et al
    . Diffusion tensor imaging and fibre tracking in cervical spondylotic myelopathy. Eur Radiol 2011;21:426–33 doi:10.1007/s00330-010-1927-z pmid:20725834
    CrossRefPubMed
  7. 7.↵
    1. von Meyenburg J,
    2. Wilm BJ,
    3. Weck A, et al
    . Spinal cord diffusion-tensor imaging and motor-evoked potentials in multiple sclerosis patients: microstructural and functional asymmetry. Radiology 2013;267:869–79 doi:10.1148/radiol.13112776 pmid:23468573
    CrossRefPubMed
  8. 8.↵
    1. Taso M,
    2. Girard OM,
    3. Duhamel G, et al
    . Tract-specific and age-related variations of the spinal cord microstructure: a multi-parametric MRI study using diffusion tensor imaging (DTI) and inhomogeneous magnetization transfer (ihMT). NMR Biomed 2016;29:817–32 doi:10.1002/nbm.3530 pmid:27100385
    CrossRefPubMed
  9. 9.↵
    1. Oh J,
    2. Zackowski K,
    3. Chen M, et al
    . Multiparametric MRI correlates of sensorimotor function in the spinal cord in multiple sclerosis. Mult Scler 2013;19:427–35 doi:10.1177/1352458512456614 pmid:22891033
    CrossRefPubMed
  10. 10.↵
    1. Harrison NA,
    2. Cooper E,
    3. Dowell NG, et al
    . Quantitative magnetization transfer imaging as a biomarker for effects of systemic inflammation on the brain. Biol Psychiatry 2015;78:49–57 doi:10.1016/j.biopsych.2014.09.023 pmid:25526971
    CrossRefPubMed
  11. 11.↵
    1. Vavasour IM,
    2. Laule C,
    3. Li DK, et al
    . Is the magnetization transfer ratio a marker for myelin in multiple sclerosis? J Magn Reson Imaging 2011;33:713–18 doi:10.1002/jmri.22441 pmid:21563257
    CrossRefPubMed
  12. 12.↵
    1. Kearney H,
    2. Yiannakas MC,
    3. Abdel-Aziz K, et al
    . Improved MRI quantification of spinal cord atrophy in multiple sclerosis. J Magn Reson Imaging 2014;39:617–23 doi:10.1002/jmri.24194 pmid:23633384
    CrossRefPubMed
  13. 13.↵
    1. Nouri A,
    2. Tetreault L,
    3. Zamorano JJ, et al
    . Role of magnetic resonance imaging in predicting surgical outcome in patients with cervical spondylotic myelopathy. Spine 2015;40:171–78 doi:10.1097/BRS.0000000000000678 pmid:25668335
    CrossRefPubMed
  14. 14.↵
    1. Grabher P,
    2. Mohammadi S,
    3. Trachsler A, et al
    . Voxel-based analysis of grey and white matter degeneration in cervical spondylotic myelopathy. Sci Rep 2016;6:24636 doi:10.1038/srep24636 pmid:27095134
    CrossRefPubMed
  15. 15.↵
    1. Datta E,
    2. Papinutto N,
    3. Schlaeger R, et al
    . Gray matter segmentation of the spinal cord with active contours in MR images. Neuroimage 2017;147:788–99 doi:10.1016/j.neuroimage.2016.07.062 pmid:27495383
    CrossRefPubMed
  16. 16.↵
    1. Cohen-Adad J,
    2. Buchbinder B,
    3. Oaklander AL
    . Cervical spinal cord injection of epidural corticosteroids: comprehensive longitudinal study including multiparametric magnetic resonance imaging. Pain 2012;153:2292–99 doi:10.1016/j.pain.2012.07.028 pmid:22964435
    CrossRefPubMed
  17. 17.↵
    1. Cohen-Adad J,
    2. Zhao W,
    3. Keil B, et al
    . 7-T MRI of the spinal cord can detect lateral corticospinal tract abnormality in amyotrophic lateral sclerosis. Muscle Nerve 2013;47:760–62 doi:10.1002/mus.23720 pmid:23553571
    CrossRefPubMed
  18. 18.↵
    1. White ML,
    2. Zhang Y,
    3. Healey K
    . Cervical spinal cord multiple sclerosis: evaluation with 2D multi-echo recombined gradient echo MR imaging. J Spinal Cord Med 2011;34:93–98 doi:10.1179/107902610X12911165975025 pmid:21528632
    CrossRefPubMed
  19. 19.↵
    1. Cohen-Adad J
    . What can we learn from T2* maps of the cortex? Neuroimage 2014;93(pt 2):189–200 doi:10.1016/j.neuroimage.2013.01.023 pmid:23357070
    CrossRefPubMed
  20. 20.↵
    1. Martin AR,
    2. De Leener B,
    3. Cohen-Adad J, et al
    . A novel MRI biomarker of spinal cord white matter injury: T2*-weighted white matter to gray matter signal intensity ratio. AJNR Am J Neuroradiol 2017 Apr 20. [Epub ahead of print] doi:10.3174/ajnr.A5162 pmid:28428212
    CrossRefPubMed
  21. 21.↵
    1. Cohen-Adad J,
    2. El Mendili MM,
    3. Lehéricy S, et al
    . Demyelination and degeneration in the injured human spinal cord detected with diffusion and magnetization transfer MRI. Neuroimage 2011;55:1024–33 doi:10.1016/j.neuroimage.2010.11.089 pmid:21232610
    CrossRefPubMedWeb of Science
  22. 22.↵
    1. De Leener B,
    2. Lévy S,
    3. Dupont SM, et al
    . SCT: Spinal Cord Toolbox, an open-source software for processing spinal cord MRI data. Neuroimage 2017;145(pt A):24–43 doi:10.1016/j.neuroimage.2016.10.009 pmid:27720818
    CrossRefPubMed
  23. 23.↵
    1. Fonov VS,
    2. Le Troter A,
    3. Taso M, et al
    . Framework for integrated MRI average of the spinal cord white and gray matter: the MNI-Poly-AMU template. Neuroimage 2014;102:817–27 doi:10.1016/j.neuroimage.2014.08.057 pmid:25204864
    CrossRefPubMed
  24. 24.↵
    1. Chang LC,
    2. Jones DK,
    3. Pierpaoli C
    . RESTORE: robust estimation of tensors by outlier rejection. Magn Reson Med 2005;53:1088–95 doi:10.1002/mrm.20426 pmid:15844157
    CrossRefPubMedWeb of Science
  25. 25.↵
    1. Asman AJ,
    2. Bryan FW,
    3. Smith SA, et al
    . Groupwise multi-atlas segmentation of the spinal cord's internal structure. Med Image Anal 2014;18:460–71 doi:10.1016/j.media.2014.01.003 pmid:24556080
    CrossRefPubMed
  26. 26.↵
    1. Lévy S,
    2. Benhamou M,
    3. Naaman C, et al
    . White matter atlas of the human spinal cord with estimation of partial volume effect. Neuroimage 2015;119:262–71 doi:10.1016/j.neuroimage.2015.06.040 pmid:26099457
    CrossRefPubMed
  27. 27.↵
    1. Samson RS,
    2. Ciccarelli O,
    3. Kachramanoglou C, et al
    . Tissue- and column-specific measurements from multi-parameter mapping of the human cervical spinal cord at 3 T. NMR Biomed 2013;26:1823–30 doi:10.1002/nbm.3022 pmid:24105923
    CrossRefPubMed
  28. 28.↵
    1. Smith SA,
    2. Jones CK,
    3. Gifford A, et al
    . Reproducibility of tract-specific magnetization transfer and diffusion tensor imaging in the cervical spinal cord at 3 Tesla. NMR Biomed 2010;23:207–17 doi:10.1002/nbm.1447 pmid:19924726
    CrossRefPubMedWeb of Science
  29. 29.↵
    1. Ellingson BM,
    2. Salamon N,
    3. Grinstead JW, et al
    . Diffusion tensor imaging predicts functional impairment in mild-to-moderate cervical spondylotic myelopathy. Spine J 2014;14:2589–97 doi:10.1016/j.spinee.2014.02.027 pmid:24561036
    CrossRefPubMed
  30. 30.↵
    1. Kerkovský M,
    2. Bednarik J,
    3. Dušek L, et al
    . Magnetic resonance diffusion tensor imaging in patients with cervical spondylotic spinal cord compression: correlations between clinical and electrophysiological findings. Spine (Phila Pa 1976) 2012;37:48–56 doi:10.1097/BRS.0b013e31820e6c35 pmid:21228747
    CrossRefPubMed
  31. 31.↵
    1. Samson RS,
    2. Lévy S,
    3. Schneider T, et al
    . ZOOM or non-ZOOM? Assessing spinal cord diffusion tensor imaging protocols for multi-centre studies. PLoS One 2016;11:e0155557 doi:10.1371/journal.pone.0155557 pmid:27171194
    CrossRefPubMed
  32. 32.↵
    1. Cadotte DW,
    2. Cadotte A,
    3. Cohen-Adad J, et al
    . Characterizing the location of spinal and vertebral levels in the human cervical spinal cord. AJNR Am J Neuroradiol 2015;36:803–10 doi:10.3174/ajnr.A4192 pmid:25523587
    Abstract/FREE Full Text
  33. 33.↵
    1. Kato F,
    2. Yukawa Y,
    3. Suda K, et al
    . Normal morphology, age-related changes and abnormal findings of the cervical spine, part II: magnetic resonance imaging of over 1,200 asymptomatic subjects. Eur Spine J 2012;21:1499–507 doi:10.1007/s00586-012-2176-4 pmid:22302162
    CrossRefPubMedWeb of Science
  34. 34.↵
    1. Levesque IR,
    2. Giacomini PS,
    3. Narayanan S, et al
    . Quantitative magnetization transfer and myelin water imaging of the evolution of acute multiple sclerosis lesions. Magn Reson Med 2010;63:633–40 doi:10.1002/mrm.22244 pmid:20146232
    CrossRefPubMedWeb of Science
  35. 35.↵
    1. Freund P,
    2. Weiskopf N,
    3. Ashburner J, et al
    . MRI investigation of the sensorimotor cortex and the corticospinal tract after acute spinal cord injury: a prospective longitudinal study. Lancet Neurol 2013;12:873–81 doi:10.1016/S1474-4422(13)70146-7 pmid:23827394
    CrossRefPubMed
  36. 36.↵
    1. Summers P,
    2. Staempfli P,
    3. Jaermann T, et al
    . A preliminary study of the effects of trigger timing on diffusion tensor imaging of the human spinal cord. AJNR Am J Neuroradiol 2006;27:1952–61 pmid:17032874
    Abstract/FREE Full Text
  37. 37.↵
    1. Wilson JR,
    2. Barry S,
    3. Fischer DJ, et al
    . Frequency, timing, and predictors of neurological dysfunction in the nonmyelopathic patient with cervical spinal cord compression, canal stenosis, and/or ossification of the posterior longitudinal ligament. Spine 2013;38:S37–54 doi:10.1097/BRS.0b013e3182a7f2e7 pmid:23963005
    CrossRefPubMed
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 38 (6)
American Journal of Neuroradiology
Vol. 38, Issue 6
1 Jun 2017
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Clinically Feasible Microstructural MRI to Quantify Cervical Spinal Cord Tissue Injury Using DTI, MT, and T2*-Weighted Imaging: Assessment of Normative Data and Reliability
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
A.R. Martin, B. De Leener, J. Cohen-Adad, D.W. Cadotte, S. Kalsi-Ryan, S.F. Lange, L. Tetreault, A. Nouri, A. Crawley, D.J. Mikulis, H. Ginsberg, M.G. Fehlings
Clinically Feasible Microstructural MRI to Quantify Cervical Spinal Cord Tissue Injury Using DTI, MT, and T2*-Weighted Imaging: Assessment of Normative Data and Reliability
American Journal of Neuroradiology Jun 2017, 38 (6) 1257-1265; DOI: 10.3174/ajnr.A5163

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Clinically Feasible Microstructural MRI to Quantify Cervical Spinal Cord Tissue Injury Using DTI, MT, and T2*-Weighted Imaging: Assessment of Normative Data and Reliability
A.R. Martin, B. De Leener, J. Cohen-Adad, D.W. Cadotte, S. Kalsi-Ryan, S.F. Lange, L. Tetreault, A. Nouri, A. Crawley, D.J. Mikulis, H. Ginsberg, M.G. Fehlings
American Journal of Neuroradiology Jun 2017, 38 (6) 1257-1265; DOI: 10.3174/ajnr.A5163
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • Materials and Methods
    • Results
    • Discussion
    • Conclusions
    • ACKNOWLEDGMENTS
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Extent of cord pathology in the lumbosacral enlargement in non-traumatic versus traumatic spinal cord injury
  • Tracking white and grey matter degeneration along the spinal cord axis in degenerative cervical myelopathy
  • The Restless Spinal Cord in Degenerative Cervical Myelopathy
  • Quantification of DTI in the Pediatric Spinal Cord: Application to Clinical Evaluation in a Healthy Patient Population
  • Convolutional Neural Network-Based Automated Segmentation of the Spinal Cord and Contusion Injury: Deep Learning Biomarker Correlates of Motor Impairment in Acute Spinal Cord Injury
  • In vivo evidence of remote neural degeneration in the lumbar enlargement after cervical injury
  • Can microstructural MRI detect subclinical tissue injury in subjects with asymptomatic cervical spinal cord compression? A prospective cohort study
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • Management Outcomes For VO Spine Biopsy
  • Characteristics of SIH Type I Culprit Lesions
  • Advanced Imaging of Type 2 Spinal CSF Leaks
Show more Spine Imaging and Spine Image-Guided Interventions

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire