Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Getting new auth cookie, if you see this message a lot, tell someone!
Research ArticleAdult Brain

Differentiation between Treatment-Induced Necrosis and Recurrent Tumors in Patients with Metastatic Brain Tumors: Comparison among 11C-Methionine-PET, FDG-PET, MR Permeability Imaging, and MRI-ADC—Preliminary Results

N. Tomura, M. Kokubun, T. Saginoya, Y. Mizuno and Y. Kikuchi
American Journal of Neuroradiology August 2017, 38 (8) 1520-1527; DOI: https://doi.org/10.3174/ajnr.A5252
N. Tomura
aFrom the Departments of Neuroradiology, Radiology, and Neurosurgery, Southern Tohoku Research Institute for Neuroscience, Southern Tohoku General Hospital, Koriyama City, Fukushima, Japan.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for N. Tomura
M. Kokubun
aFrom the Departments of Neuroradiology, Radiology, and Neurosurgery, Southern Tohoku Research Institute for Neuroscience, Southern Tohoku General Hospital, Koriyama City, Fukushima, Japan.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for M. Kokubun
T. Saginoya
aFrom the Departments of Neuroradiology, Radiology, and Neurosurgery, Southern Tohoku Research Institute for Neuroscience, Southern Tohoku General Hospital, Koriyama City, Fukushima, Japan.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for T. Saginoya
Y. Mizuno
aFrom the Departments of Neuroradiology, Radiology, and Neurosurgery, Southern Tohoku Research Institute for Neuroscience, Southern Tohoku General Hospital, Koriyama City, Fukushima, Japan.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Y. Mizuno
Y. Kikuchi
aFrom the Departments of Neuroradiology, Radiology, and Neurosurgery, Southern Tohoku Research Institute for Neuroscience, Southern Tohoku General Hospital, Koriyama City, Fukushima, Japan.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Y. Kikuchi
  • Article
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

REFERENCES

  1. 1.↵
    1. Tsao MN,
    2. Mehta MP,
    3. Whelan TJ, et al
    . The American Society for Therapeutic Radiology and Oncology (ASTRO) evidence-based review of the role radiosurgery for malignant glioma. Int J Radiol Oncol Biol Phys 2005;63:47–55 doi:10.1016/j.ijrobp.2005.05.024 pmid:16111571
    CrossRefPubMedWeb of Science
  2. 2.↵
    1. Wowra B,
    2. Muacevic A,
    3. Tonn JC
    . Cyber knife radiosurgery for brain metastasis. Prog Neurol Surg 2012;25:201–09 doi:10.1159/000331193 pmid:22236681
    CrossRefPubMed
  3. 3.↵
    1. Mehta MP,
    2. Tsao MN,
    3. Whelan TJ, et al
    . The American Society for Therapeutic Radiology and Oncology (ASTRO) evidence-based review of the role of radiosurgery for brain metastases. Int J Radiol Oncol Biol Phys 2005;63:37–46 doi:10.1016/j.ijrobp.2005.05.023 pmid:16111570
    CrossRefPubMedWeb of Science
  4. 4.↵
    1. Mohammadi AM,
    2. Schroeder JL,
    3. Angelov L, et al
    . Impact of the radiosurgery prescription dose on the local control of the small (2 cm or smaller) brain metastases. J Neurosurg 2017;126:735–743 doi:10.3171/2016.3.JNS153014 pmid:27231978
    CrossRefPubMed
  5. 5.↵
    1. Leeman JE,
    2. Clump DA,
    3. Flickinger JC, et al
    . Extent of perilesional edema differentiates radionecrosis from tumor recurrence following stereotactic radiosurgery for brain metastases. Neuro Oncol 2013;15:1732–38 doi:10.1093/neuonc/not130 pmid:24243914
    CrossRefPubMed
  6. 6.↵
    1. Fabiano AJ,
    2. Qiu J
    . Post-stereotactic radiosurgery brain metastases: a review. J Neurosurg Sci 2015;59:157–67 pmid:25600555
    PubMed
  7. 7.↵
    1. Chang SD,
    2. Lee E,
    3. Sakamoto GT, et al
    . Stereotactic radiosurgery in patients with multiple brain metastases. Neurosurg Focus 2000;9:e3 pmid:16836289
    PubMed
  8. 8.↵
    1. Shah R,
    2. Vattoth S,
    3. Jacob R, et al
    . Radiation necrosis in the brain: imaging features and differentiation from tumor recurrence. Radiographics 2012;32:1343–59 doi:10.1148/rg.325125002 pmid:22977022
    CrossRefPubMed
  9. 9.↵
    1. Verma N,
    2. Cowperthwaite MC,
    3. Burnett MG, et al
    . Differentiating tumor recurrence from treatment necrosis: a review of neuro-oncologic imaging strategies. Neuro Oncol 2013;15:515–34 doi:10.1093/neuonc/nos307 pmid:23325863
    CrossRefPubMed
  10. 10.↵
    1. Stockham AL,
    2. Tievsky AL,
    3. Koyfman SA, et al
    . Conventional MRI does not reliably distinguish radiation necrosis from tumor recurrence after stereotactic radiosurgery. J Neuroncol 2012;109:149–58 doi:10.1007/s11060-012-0881-9 pmid:22638727
    CrossRefPubMed
  11. 11.↵
    1. Ou SH,
    2. Klempner SJ,
    3. Azada MC, et al
    . Radiation necrosis presenting as pseudoprogression (PsP) during alectinib treatment of previously radiated brain metastases in ALK-positive NSCLC: implications for disease assessment and management. Lung Cancer 2015;88:355–59 doi:10.1016/j.lungcan.2015.03.022 pmid:25882777
    CrossRefPubMed
  12. 12.↵
    1. Valk PE,
    2. Dillon WP
    . Radiation injury of the brain. AJNR Am J Neuroradiol 1991;12:45–62 pmid:7502957
    Abstract/FREE Full Text
  13. 13.↵
    1. Chemov MF,
    2. Ono Y,
    3. Abe K, et al
    . Differentiation of tumor progression and radiation-induced effects after intracranial radiosurgery. Acta Neurochir Suppl 2013;116:193–210 doi:10.1007/978-3-7091-1376-9_29 pmid:23417479
    CrossRefPubMed
  14. 14.↵
    1. Chemov MF,
    2. Hayashi M,
    3. Izawa M, et al
    . Multivoxel proton differentiation of radiation-induced necrosis and tumor recurrence after gamma knife radiosurgery for brain metastases. Brain Tumor Pathol 2006;23:19–27 doi:10.1007/s10014-006-0194-9 pmid:18095115
    CrossRefPubMedWeb of Science
  15. 15.↵
    1. Asao C,
    2. Korogi Y,
    3. Kitajima M, et al
    . Diffusion-weighted imaging of radiation-induced brain injury for differentiation from tumor recurrence. AJNR Am J Neuroradiol 2005;26:1455–60 pmid:15956515
    Abstract/FREE Full Text
  16. 16.↵
    1. Wang S,
    2. Chen Y,
    3. Lal B, et al
    . Evaluation of radiation necrosis and malignant glioma in rat models using diffusion tensor imaging. J Neuroncol 2012;107:51–60 doi:10.1007/s11060-011-0719-x pmid:21948114
    CrossRefPubMed
  17. 17.↵
    1. Jain R,
    2. Narang J,
    3. Schultz L, et al
    . Permeability estimates in histopathology-proved treatment-induced necrosis using perfusion CT: can these add to other perfusion parameters in differentiating from recurrent/progressive tumors? AJNR Am J Neuroradiol 2011;32:658–63 doi:10.3174/ajnr.A2378 pmid:21330392
    Abstract/FREE Full Text
  18. 18.↵
    1. Gómez-Río M,
    2. Martínez Del Valle Torres D,
    3. Rodríguez-Fernández A, et al
    . (201)Tl-SPECT in low-grade gliomas: diagnostic accuracy in differential diagnosis between tumour recurrence and radionecrosis. Eur J Nucl Med Mol Imaging 2004;31:1237–43 pmid:15133633
    PubMed
  19. 19.↵
    1. Le Jeune FP,
    2. Dubois F,
    3. Blonde S, et al
    . Sestamibi technetium-99m brain single-photon emission computed tomography to identify recurrent glioma in adults: 201 studies. J Neuroncol 2006;77:177–83 doi:10.1007/s11060-005-9018-8 pmid:6314957
    CrossRefPubMed
  20. 20.↵
    1. Samnick S,
    2. Bader JB,
    3. Hellwig D, et al
    . Clinical value of iodine-123-alpha-methyl-L-tyrosine single-photon emission tomography in the differential diagnosis of recurrent brain tumor in patients pretreated for glioma at follow-up. J Clin Oncol 2002;20:396–404 pmid:11786566
    Abstract/FREE Full Text
  21. 21.↵
    1. Galldiks N,
    2. Stoffels G,
    3. Filss C, et al
    . Role of O-(2-(18)F-fluoroethyl)-L-tyrosine PET for differentiation of local recurrent brain metastasis from radiation necrosis. J Nucl Med 2012;53:1367–74 doi:10.2967/jnumed.112.103325 pmid:22872742
    Abstract/FREE Full Text
  22. 22.↵
    1. Ceccon G,
    2. Lohmann P,
    3. Stoffels G, et al
    . Dynamic O-(2–18F-fluoroethyl)-L-tyrosine positron emission tomography differentiates brain metastasis recurrence from radiation injury after radiotherapy. Neuro Oncol 2017;19:281–288 doi:10.1093/neuonc/now149 pmid:27471107
    CrossRefPubMed
  23. 23.↵
    1. Lizarraga KJ,
    2. Allen-Auerbach M,
    3. Czernin J, et al
    . (18)F-FDOPA PET for differentiating recurrent or progressive brain metastatic tumors from late or delayed radiation injury after treatment. J Nucl Med 2014;55:30–36 doi:10.2967/jnumed.113.121418 pmid:24167081
    Abstract/FREE Full Text
  24. 24.↵
    1. Kim EE,
    2. Chung SK,
    3. Haynie TP, et al
    . Differentiation of residual or recurrent tumors from post-treatment changes with F-18 FDG PET. Radiographics 1992;12:269–79 doi:10.1148/radiographics.12.2.1561416 pmid:1561416
    CrossRefPubMedWeb of Science
  25. 25.↵
    1. Di Chiro G,
    2. Oldfield E,
    3. Wright DC, et al
    . Cerebral necrosis after radiotherapy and/or intraarterial chemotherapy for brain tumors: PET and neuropathologic studies. AJR Am J Roentgenol 1988;150:189–97 doi:10.2214/ajr.150.1.189 pmid:3257119
    CrossRefPubMedWeb of Science
  26. 26.↵
    1. Mogard J,
    2. Kihlström L,
    3. Ericson K, et al
    . Recurrent tumor vs radiation effects after gamma knife radiosurgery of intracerebral metastases: diagnosis with PET-FDG. J Comput Assist Tomogr 1994;18:177–81 doi:10.1097/00004728-199403000-00002 pmid:8126264
    CrossRefPubMed
  27. 27.↵
    1. Sonoda Y,
    2. Kumabe T,
    3. Takahashi T, et al
    . Clinical usefulness of 11C-MET PET and 201Tl-SPECT for differentiation of recurrent glioma from radiation necrosis. Neuro Med Chir (Tokyo) 1998;38:342–47 doi:10.2176/nmc.38.342 pmid:9689817
    CrossRefPubMed
  28. 28.↵
    1. Tsuyuguchi N,
    2. Sunada I,
    3. Iwai Y, et al
    . Methionine positron emission tomography of recurrent metastatic brain tumor and radiation necrosis after stereotactic radiosurgery: is a differential diagnosis possible? J Neurosurg 2003;98:1056–64 doi:10.3171/jns.2003.98.5.1056 pmid:12744366
    CrossRefPubMedWeb of Science
  29. 29.↵
    1. Tsuyuguchi N,
    2. Takami T,
    3. Sunada I, et al
    . Methionine positron emission tomography for differentiation of recurrent brain tumor and radiation necrosis after stereotactic radiosurgery: in malignant glioma. Ann Nucl Med 2004;18:291–96 doi:10.1007/BF02984466 pmid:15359921
    CrossRefPubMedWeb of Science
  30. 30.↵
    1. Takenaka S,
    2. Asano Y,
    3. Shinoda J, et al
    . Comparison of (11)C-methionine, (11)C-choline, and (18)F-fluorodeoxyglucose-PET for distinguishing glioma recurrence from radiation necrosis. Neurol Med Chir (Tokyo) 2014;54:280–89 doi:10.2176/nmc.oa2013-0117 pmid:24305028
    CrossRefPubMed
  31. 31.↵
    1. Terakawa Y,
    2. Tsuyuguchi N,
    3. Iwai Y, et al
    . Diagnostic accuracy of 11C-methionie PET for differentiation of recurrent brain tumors from radiation necrosis after radiotherapy. J Nucl Med 2008;49:694–99 doi:10.2967/jnumed.107.048082 pmid:18413375
    Abstract/FREE Full Text
  32. 32.↵
    1. Barrett T,
    2. Brechbiel M,
    3. Bernardo M, et al
    . MRI of tumor angiogenesis. J Magn Reson Imaging 2007;26:235–49 doi:10.1002/jmri.20991 pmid:17623889
    CrossRefPubMed
  33. 33.↵
    1. Pauliah M,
    2. Saxena V,
    3. Haris M, et al
    . Improved T(1)-weighted dynamic contrast-enhanced MRI to probe microvascularity and heterogeneity of human glioma. Magn Reson Imaging 2007;25:1292–99 doi:10.1016/j.mri.2007.03.027 pmid:17490844
    CrossRefPubMedWeb of Science
  34. 34.↵
    1. Wu S,
    2. Thornhill RE,
    3. Chen S, et al
    . Relative recirculation: a fast, model-free surrogate for the measurement of blood-brain barrier permeability and the prediction of hemorrhagic transformation in acute ischemic stroke. Invest Radiol 2009;44:662–68 doi:10.1097/RLI.0b013e3181ae9c40 pmid:19724234
    CrossRefPubMed
  35. 35.↵
    1. Tofts PS,
    2. Brix G,
    3. Buckley DL, et al
    . Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusible tracer: standardized quantities and symbols. J Magn Reson Imaging 1999;10:223–32 pmid:10508281
    CrossRefPubMedWeb of Science
  36. 36.↵
    1. Vidarsson L,
    2. Thornhill RE,
    3. Liu F, et al
    . Quantitative permeability magnetic resonance imaging in acute ischemic stroke: how long do we need to scan? Magn Reson Imaging 2009;27:1216–22 doi:10.1016/j.mri.2009.01.019 pmid:19695816
    CrossRefPubMed
  37. 37.↵
    1. Yang S,
    2. Law M,
    3. Zagzag D, et al
    . Dynamic contrast-enhanced perfusion MR imaging measurements of endothelial permeability: differentiation between atypical and typical meningiomas. AJNR Am J Neuroradiol 2003;24:1554–59 pmid:13679270
    Abstract/FREE Full Text
  38. 38.↵
    1. Cha S,
    2. Yang L,
    3. Johnson G, et al
    . Comparison of microvascular permeability measurements, K(trans), determined with conventional steady-state T1-weighted and first-pass T2*-weighted MR imaging methods in gliomas and meningiomas. AJNR Am J Neuroradiol 2006;27:409–17 pmid:16484420
    Abstract/FREE Full Text
  39. 39.↵
    1. Lee SK,
    2. Kim E,
    3. Choi H
    . Glioma grading: comparison of parameters from dynamic contrast-enhanced (DCE) MRI, apparent diffusion coefficient (ADC), and fractional anisotropy (FA). Proc Intl Soc Mag Reson Med 2011;19:4266
  40. 40.↵
    1. Zheng D,
    2. Chen Y,
    3. Chen Y, et al
    . Dynamic contrast-enhanced MRI of nasopharyngeal carcinoma: a preliminary study of the correlations between quantitative parameters and clinical stage. J Magn Reson Imaging 2014;39:940–48 doi:10.1002/jmri.24249 pmid:24108569
    CrossRefPubMed
  41. 41.↵
    1. Huang B,
    2. Wong CS,
    3. Whitcher B, et al
    . Dynamic contrast-enhanced resonance imaging for characterising nasopharyngeal carcinoma: comparison of semiquantitative and quantitative parameters and correlation with tumour stage. Eur Radiol 2013;23:1495–502 doi:10.1007/s00330-012-2740-7 pmid:23377545
    CrossRefPubMed
  42. 42.↵
    1. Kim YE,
    2. Lim JS,
    3. Choi J, et al
    . Perfusion parameters of dynamic contrast-enhanced magnetic resonance imaging in patients with rectal cancer: correlation with microvascular density and vascular endothelial growth factor expression. Korean J Radiol 2013;14:878–85 doi:10.3348/kjr.2013.14.6.878 pmid:24265562
    CrossRefPubMed
  43. 43.↵
    1. Verma S,
    2. Turkbey B,
    3. Muradyan N, et al
    . Overview of dynamic contrast-enhanced MRI in prostate cancer diagnosis and management. AJR Am J Roentgenol 2012;198:1277–88 doi:10.2214/AJR.12.8510 pmid:22623539
    CrossRefPubMedWeb of Science
  44. 44.↵
    1. Narang J,
    2. Jain R,
    3. Arbab AS, et al
    . Differentiating treatment-induced necrosis from recurrent/progressive brain tumor using nonmodel-based semiquantitative indices derived from dynamic contrast-enhanced T1-weighted MR perfusion. Neuro Oncol 2011;13:1037–46 doi:10.1093/neuonc/nor075 pmid:21803763
    CrossRefPubMed
  45. 45.↵
    1. Tomura N,
    2. Ito Y,
    3. Matsuoka H, et al
    . PET findings of intramedullary tumors of the spinal cord using [18F]FDG and [11C]methionine. AJNR Am J Neuroradiol 2013;34:1278–83 doi:10.3174/ajnr.A3374 pmid:23275592
    Abstract/FREE Full Text
  46. 46.↵
    1. Nuñez R,
    2. Macapinlac HA,
    3. Yeung HWD, et al
    . Combined 18F-FDG and 11C-methionine PET scans in patients with newly progressive metastatic prostate cancer. J Nucl Med 2002;43:46–55 pmid:11801702
    Abstract/FREE Full Text
  47. 47.↵
    1. Pirotte B,
    2. Goldman S,
    3. Massager N, et al
    . Combined use of 18F-fluorodeoxyglucose and 11C-methionine in 45 positron emission tomography-guided stereotactic brain biopsies. J Neurosurg 2004;101:476–83 doi:10.3171/jns.2004.101.3.0476 pmid:15352606
    CrossRefPubMed
  48. 48.↵
    1. Levivier M,
    2. Massager N,
    3. Wikler D, et al
    . Use of stereotactic PET images in dosimetry planning of radiosurgery for brain tumors: clinical experience and proposed classification. J Nucl Med 2004;45:1146–54 pmid:15235060
    Abstract/FREE Full Text
  49. 49.↵
    1. Pirotte B,
    2. Goldman S,
    3. Massager N, et al
    . Comparison of 18F-FDG and 11C-methionine for PET-guided stereotactic brain biopsy of gliomas. J Nucl Med 2004;45:1293–98 pmid:15299051
    Abstract/FREE Full Text
  50. 50.↵
    1. Mitumoto T,
    2. Kubota K,
    3. Sato T, et al
    . Validation for performing 11C-methionine and 18F-FDG-PET studies on the same day. Nucl Med Commun 2012;33:297–304 doi:10.1097/MNM.0b013e32834dfa38 pmid:22107999
    CrossRefPubMed
  51. 51.↵
    1. Barajas RF Jr.,
    2. Chang JS,
    3. Segal MR, et al
    . Differentiation of recurrent glioblastoma multiforme from radiation necrosis after external beam radiation therapy with dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. Radiology 2009;253:486–96 doi:10.1148/radiol.2532090007 pmid:19789240
    CrossRefPubMedWeb of Science
  52. 52.↵
    1. Bisdas S,
    2. Naegele T,
    3. Ritz R, et al
    . Distinguishing recurrent high-grade gliomas from radiation injury: a pilot study using dynamic contrast-enhanced MR imaging. Acta Radiol 2011;18:575–83 doi:10.1016/j.acra.2011.01.018 pmid:21419671
    CrossRefPubMed
  53. 53.↵
    1. Fatterpekar GM,
    2. Galheigo D,
    3. Narayana A, et al
    . Treatment-related change versus tumor recurrence in high-grade gliomas: a diagnostic conundrum—use of dynamic susceptibility contrast-enhanced (DSC) perfusion MRI. AJR Am J Roentgenol 2012;198:19–26 doi:10.2214/AJR.11.7417 pmid:22194475
    CrossRefPubMed
  54. 54.↵
    1. Guo AC,
    2. Cummings TJ,
    3. Dash RC, et al
    . Lymphomas and high-grade astrocytomas: comparison of water diffusibility and histologic characteristics. Radiology 2002;224:177–83 doi:10.1148/radiol.2241010637 pmid:12091680
    CrossRefPubMedWeb of Science
  55. 55.↵
    1. Conti PS,
    2. Lilien DL,
    3. Hawley K, et al
    . PET and [18F]-FDG in oncology: a clinical update. Nucl Med Biol 1996;23:717–35 doi:10.1016/0969-8051(96)00074-1 pmid:8940714
    CrossRefPubMedWeb of Science
  56. 56.↵
    1. Hoh CK,
    2. Schiepers C,
    3. Seltzer MA, et al
    . PET in oncology: will it replace the other modalities? Semin Nucl Med 1997;27:94–106 doi:10.1016/S0001-2998(97)80042-6 pmid:9144854
    CrossRefPubMedWeb of Science
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 38 (8)
American Journal of Neuroradiology
Vol. 38, Issue 8
1 Aug 2017
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Differentiation between Treatment-Induced Necrosis and Recurrent Tumors in Patients with Metastatic Brain Tumors: Comparison among 11C-Methionine-PET, FDG-PET, MR Permeability Imaging, and MRI-ADC—Preliminary Results
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
N. Tomura, M. Kokubun, T. Saginoya, Y. Mizuno, Y. Kikuchi
Differentiation between Treatment-Induced Necrosis and Recurrent Tumors in Patients with Metastatic Brain Tumors: Comparison among 11C-Methionine-PET, FDG-PET, MR Permeability Imaging, and MRI-ADC—Preliminary Results
American Journal of Neuroradiology Aug 2017, 38 (8) 1520-1527; DOI: 10.3174/ajnr.A5252

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Differentiation between Treatment-Induced Necrosis and Recurrent Tumors in Patients with Metastatic Brain Tumors: Comparison among 11C-Methionine-PET, FDG-PET, MR Permeability Imaging, and MRI-ADC—Preliminary Results
N. Tomura, M. Kokubun, T. Saginoya, Y. Mizuno, Y. Kikuchi
American Journal of Neuroradiology Aug 2017, 38 (8) 1520-1527; DOI: 10.3174/ajnr.A5252
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • Materials and Methods
    • Results
    • Discussion
    • Conclusions
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Utility of Amino Acid PET in the Differential Diagnosis of Recurrent Brain Metastases and Treatment-Related Changes: A Meta-analysis
  • Diagnostic Accuracy of Amino Acid and FDG-PET in Differentiating Brain Metastasis Recurrence from Radionecrosis after Radiotherapy: A Systematic Review and Meta-Analysis
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • Diagnostic Neuroradiology of Monoclonal Antibodies
  • Clinical Outcomes After Chiari I Decompression
  • Segmentation of Brain Metastases with BLAST
Show more Adult Brain

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire