Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Research ArticleAdult Brain
Open Access

Feasibility of Brain Atrophy Measurement in Clinical Routine without Prior Standardization of the MRI Protocol: Results from MS-MRIUS, a Longitudinal Observational, Multicenter Real-World Outcome Study in Patients with Relapsing-Remitting MS

R. Zivadinov, N. Bergsland, J.R. Korn, M.G. Dwyer, N. Khan, J. Medin, J.C. Price, B. Weinstock-Guttman and D. Silva on behalf of the MS-MRIUS Study Group
American Journal of Neuroradiology February 2018, 39 (2) 289-295; DOI: https://doi.org/10.3174/ajnr.A5442
R. Zivadinov
aFrom the Department of Neurology (R.Z., N.B., M.G.D.), Buffalo Neuroimaging Analysis Center
cTranslational Imaging Center at Clinical and Translational Science Institute (R.Z.), University of Buffalo, State University of New York, Buffalo, New York
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for R. Zivadinov
N. Bergsland
aFrom the Department of Neurology (R.Z., N.B., M.G.D.), Buffalo Neuroimaging Analysis Center
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for N. Bergsland
J.R. Korn
dQuintilesIMS (J.R.K.), Burlington, Massachusetts
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for J.R. Korn
M.G. Dwyer
aFrom the Department of Neurology (R.Z., N.B., M.G.D.), Buffalo Neuroimaging Analysis Center
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for M.G. Dwyer
N. Khan
eQuintilesIMS (N.K., J.C.P.), Basel, Switzerland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for N. Khan
J. Medin
fNovartis Pharmaceuticals AG (J.M., D.S.), Basel, Switzerland.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for J. Medin
J.C. Price
eQuintilesIMS (N.K., J.C.P.), Basel, Switzerland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for J.C. Price
B. Weinstock-Guttman
bDepartment of Neurology (B.W.-G.), Jacobs Multiple Sclerosis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for B. Weinstock-Guttman
D. Silva
fNovartis Pharmaceuticals AG (J.M., D.S.), Basel, Switzerland.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for D. Silva
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Vercellino M,
    2. Masera S,
    3. Lorenzatti M, et al
    . Demyelination, inflammation, and neurodegeneration in multiple sclerosis deep gray matter. J Neuropathol Exp Neurol 2009;68:489–502 doi:10.1097/NEN.0b013e3181a19a5a pmid:19525897
    CrossRefPubMed
  2. 2.↵
    1. Zivadinov R,
    2. Jakimovski D,
    3. Gandhi S, et al
    . Clinical relevance of brain atrophy assessment in multiple sclerosis: implications for its use in a clinical routine. Expert Rev Neurother 2016;16:777–93 doi:10.1080/14737175.2016.1181543 pmid:27105209
    CrossRefPubMed
  3. 3.↵
    1. Miller DH,
    2. Barkhof F,
    3. Frank JA, et al
    . Measurement of atrophy in multiple sclerosis: pathological basis, methodological aspects and clinical relevance. Brain 2002;125:1676–95 doi:10.1093/brain/awf177 pmid:12135961
    CrossRefPubMedWeb of Science
  4. 4.↵
    1. De Stefano N,
    2. Airas L,
    3. Grigoriadis N, et al
    . Clinical relevance of brain volume measures in multiple sclerosis. CNS Drugs 2014;28:147–56 doi:10.1007/s40263-014-0140-z pmid:24446248
    CrossRefPubMedWeb of Science
  5. 5.↵
    1. De Stefano N,
    2. Stromillo ML,
    3. Giorgio A, et al
    . Establishing pathological cut-offs of brain atrophy rates in multiple sclerosis. J Neurol Neurosurg Psychiatry 2016;87:93–99 doi:10.1136/jnnp-2014-309903 pmid:25904813
    Abstract/FREE Full Text
  6. 6.↵
    1. Schippling S,
    2. Ostwaldt AC,
    3. Suppa P, et al
    . Global and regional annual brain volume loss rates in physiological aging. J Neurol 2017;264:520–28 doi:10.1007/s00415-016-8374-y pmid:28054131
    CrossRefPubMed
  7. 7.↵
    1. Zivadinov R,
    2. Havrdová E,
    3. Bergsland N, et al
    . Thalamic atrophy is associated with development of clinically definite multiple sclerosis. Radiology 2013;268:831–41 doi:10.1148/radiol.13122424 pmid:23613615
    CrossRefPubMed
  8. 8.↵
    1. Calabrese M,
    2. Rinaldi F,
    3. Mattisi I, et al
    . The predictive value of gray matter atrophy in clinically isolated syndromes. Neurology 2011;77:257–63 doi:10.1212/WNL.0b013e318220abd4 pmid:21613600
    Abstract/FREE Full Text
  9. 9.↵
    1. Fisher E,
    2. Lee JC,
    3. Nakamura K, et al
    . Gray matter atrophy in multiple sclerosis: a longitudinal study. Ann Neurol 2008;64:255–65 doi:10.1002/ana.21436 pmid:18661561
    CrossRefPubMedWeb of Science
  10. 10.↵
    1. Popescu V,
    2. Agosta F,
    3. Hulst HE, et al
    ; MAGNIMS Study Group. Brain atrophy and lesion load predict long term disability in multiple sclerosis. J Neurol Neurosurg Psychiatry 2013;84:1082–91 doi:10.1136/jnnp-2012-304094 pmid:23524331
    Abstract/FREE Full Text
  11. 11.↵
    1. Jacobsen C,
    2. Hagemeier J,
    3. Myhr KM, et al
    . Brain atrophy and disability progression in multiple sclerosis patients: a 10-year follow-up study. J Neurol Neurosurg Psychiatry 2014;85:1109–15 doi:10.1136/jnnp-2013-306906 pmid:24554101
    Abstract/FREE Full Text
  12. 12.↵
    1. Zivadinov R,
    2. Uher T,
    3. Hagemeier J, et al
    . A serial 10-year follow-up study of brain atrophy and disability progression in RRMS patients. Mult Scler 2016;22:1709–18 doi:10.1177/1352458516629769 pmid:26883943
    CrossRefPubMed
  13. 13.↵
    1. Filippi M,
    2. Preziosa P,
    3. Copetti M, et al
    . Gray matter damage predicts the accumulation of disability 13 years later in MS. Neurology 2013;81:1759–67 doi:10.1212/01.wnl.0000435551.90824.d0 pmid:24122185
    Abstract/FREE Full Text
  14. 14.↵
    1. Sormani MP,
    2. Arnold DL,
    3. De Stefano N
    . Treatment effect on brain atrophy correlates with treatment effect on disability in multiple sclerosis. Ann Neurol 2014;75:43–49 doi:10.1002/ana.24018 pmid:24006277
    CrossRefPubMed
  15. 15.↵
    1. Zivadinov R,
    2. Dwyer MG,
    3. Bergsland N
    . Brain atrophy measurements should be used to guide therapy monitoring in MS: YES. Mult Scler 2016;22:1522–24 doi:10.1177/1352458516649253 pmid:27335098
    CrossRefPubMed
  16. 16.↵
    1. Azevedo CJ,
    2. Pelletier D
    . Whole-brain atrophy: ready for implementation into clinical decision-making in multiple sclerosis? Curr Opin Neurol 2016;29:237–42 doi:10.1097/WCO.0000000000000322 pmid:27070219
    CrossRefPubMed
  17. 17.↵
    1. Rocca MA,
    2. Battaglini M,
    3. Benedict RH, et al
    . Brain MRI atrophy quantification in MS: from methods to clinical application. Neurology 2017;88:403–13 doi:10.1212/WNL.0000000000003542 pmid:27986875
    Abstract/FREE Full Text
  18. 18.↵
    1. Zivadinov R,
    2. Khan N,
    3. Medin J, et al
    . An observational study to assess brain MRI change and disease progression in multiple sclerosis clinical practice: the MS-MRIUS study. J Neuroimaging 2017;27:339–47 doi:10.1111/jon.12411 pmid:27918139
    CrossRefPubMed
  19. 19.↵
    1. Kurtzke JF
    . Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology 1983;33:1444–52 doi:10.1212/WNL.33.11.1444 pmid:6685237
    Abstract/FREE Full Text
  20. 20.↵
    1. Fetzer DT,
    2. West OC
    . The HIPAA privacy rule and protected health information: implications in research involving DICOM image databases. Acad Radiol 2008;15:390–95 doi:10.1016/j.acra.2007.11.008 pmid:18280936
    CrossRefPubMed
  21. 21.↵
    1. Smith SM,
    2. Zhang Y,
    3. Jenkinson M, et al
    . Accurate, robust, and automated longitudinal and cross-sectional brain change analysis. Neuroimage 2002;17:479–89 doi:10.1006/nimg.2002.1040 pmid:12482100
    CrossRefPubMedWeb of Science
  22. 22.↵
    1. Vrenken H,
    2. Vos EK,
    3. van der Flier WM, et al
    . Validation of the automated method VIENA: an accurate, precise, and robust measure of ventricular enlargement. Hum Brain Mapp 2014;35:1101–10 doi:10.1002/hbm.22237 pmid:23362163
    CrossRefPubMed
  23. 23.↵
    1. Dwyer MG,
    2. Silva D,
    3. Bergsland N, et al
    . Neurological software tool for reliable atrophy measurement (NeuroSTREAM) of the lateral ventricles on clinical-quality T2-FLAIR MRI scans in multiple sclerosis. Neuroimage Clin 2017;15:769–79 doi:10.1016/j.nicl.2017.06.022 pmid:28706852
    CrossRefPubMed
  24. 24.↵
    1. Gelineau-Morel R,
    2. Tomassini V,
    3. Jenkinson M, et al
    . The effect of hypointense white matter lesions on automated gray matter segmentation in multiple sclerosis. Hum Brain Mapp 2012;33:2802–14 doi:10.1002/hbm.21402 pmid:21976406
    CrossRefPubMed
  25. 25.↵
    1. Chu R,
    2. Tauhid S,
    3. Glanz BI, et al
    . Whole brain volume measured from 1.5T versus 3T MRI in healthy subjects and patients with multiple sclerosis. J Neuroimaging 2016;26:62–67 doi:10.1111/jon.12271 pmid:26118637
    CrossRefPubMed
  26. 26.↵
    1. Lysandropoulos AP,
    2. Absil J,
    3. Metens T, et al
    . Quantifying brain volumes for multiple sclerosis patients follow-up in clinical practice: comparison of 1.5 and 3 Tesla magnetic resonance imaging. Brain Behav 2016;6:e00422 doi:10.1002/brb3.422 pmid:27110445
    CrossRefPubMed
  27. 27.↵
    1. Biberacher V,
    2. Schmidt P,
    3. Keshavan A, et al
    . Intra- and interscanner variability of magnetic resonance imaging based volumetry in multiple sclerosis. Neuroimage 2016;142:188–97 doi:10.1016/j.neuroimage.2016.07.035 pmid:27431758
    CrossRefPubMed
  28. 28.↵
    1. De Stefano N,
    2. Silva DG,
    3. Barnett MH
    . Effect of fingolimod on brain volume loss in patients with multiple sclerosis. CNS Drugs 2017;31:289–305 doi:10.1007/s40263-017-0415-2 pmid:28247239
    CrossRefPubMed
  29. 29.↵
    1. Carmosino MJ,
    2. Brousseau KM,
    3. Arciniegas DB, et al
    . Initial evaluations for multiple sclerosis in a university multiple sclerosis center: outcomes and role of magnetic resonance imaging in referral. Arch Neurol 2005;62:585–90 doi:10.1001/archneur.62.4.585 pmid:15824257
    CrossRefPubMedWeb of Science
  30. 30.↵
    1. Traboulsee A,
    2. Simon JH,
    3. Stone L, et al
    . Revised Recommendations of the Consortium of MS Centers Task Force for a Standardized MRI Protocol and Clinical Guidelines for the Diagnosis and Follow-Up of Multiple Sclerosis. AJNR Am J Neuroradiol 2016;37:394–401 doi:10.3174/ajnr.A4539 pmid:26564433
    Abstract/FREE Full Text
  31. 31.↵
    1. Rovira À,
    2. Wattjes MP,
    3. Tintoré M, et al
    ; MAGNIMS study group. Evidence-based guidelines: MAGNIMS consensus guidelines on the use of MRI in multiple sclerosis-clinical implementation in the diagnostic process. Nat Rev Neurol 2015;11:471–82 doi:10.1038/nrneurol.2015.106 pmid:26149978
    CrossRefPubMed
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 39 (2)
American Journal of Neuroradiology
Vol. 39, Issue 2
1 Feb 2018
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Feasibility of Brain Atrophy Measurement in Clinical Routine without Prior Standardization of the MRI Protocol: Results from MS-MRIUS, a Longitudinal Observational, Multicenter Real-World Outcome Study in Patients with Relapsing-Remitting MS
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
R. Zivadinov, N. Bergsland, J.R. Korn, M.G. Dwyer, N. Khan, J. Medin, J.C. Price, B. Weinstock-Guttman, D. Silva
Feasibility of Brain Atrophy Measurement in Clinical Routine without Prior Standardization of the MRI Protocol: Results from MS-MRIUS, a Longitudinal Observational, Multicenter Real-World Outcome Study in Patients with Relapsing-Remitting MS
American Journal of Neuroradiology Feb 2018, 39 (2) 289-295; DOI: 10.3174/ajnr.A5442

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Feasibility of Brain Atrophy Measurement in Clinical Routine without Prior Standardization of the MRI Protocol: Results from MS-MRIUS, a Longitudinal Observational, Multicenter Real-World Outcome Study in Patients with Relapsing-Remitting MS
R. Zivadinov, N. Bergsland, J.R. Korn, M.G. Dwyer, N. Khan, J. Medin, J.C. Price, B. Weinstock-Guttman, D. Silva
American Journal of Neuroradiology Feb 2018, 39 (2) 289-295; DOI: 10.3174/ajnr.A5442
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • Materials and Methods
    • Results
    • Discussion
    • Conclusions
    • Appendix
    • Footnotes
    • References
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • Thalamic atrophy measured by artificial intelligence in a multicentre clinical routine real-world study is associated with disability progression
  • Disability Improvement Is Associated with Less Brain Atrophy Development in Multiple Sclerosis
  • Brain Atrophy Is Associated with Disability Progression in Patients with MS followed in a Clinical Routine
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • Diagnostic Neuroradiology of Monoclonal Antibodies
  • Clinical Outcomes After Chiari I Decompression
  • Segmentation of Brain Metastases with BLAST
Show more Adult Brain

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire