Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Research ArticleSpine Imaging and Spine Image-Guided Interventions

Normal Values of Magnetic Relaxation Parameters of Spine Components with the Synthetic MRI Sequence

M. Drake-Pérez, B.M.A. Delattre, J. Boto, A. Fitsiori, K.-O. Lovblad, S. Boudabbous and M.I. Vargas
American Journal of Neuroradiology April 2018, 39 (4) 788-795; DOI: https://doi.org/10.3174/ajnr.A5566
M. Drake-Pérez
aFrom the Division of Diagnostic and Interventional Neuroradiology (M.D.-P., J.B., A.F., K.-O.L., M.I.V.), Geneva University Hospitals and Faculty of Medicine of Geneva, Geneva, Switzerland
bDepartment of Radiology (M.D.-P.), University Hospital Marqués de Valdecilla–Instituto de Investigación Sanitaria Valdecilla, Santander, Spain
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for M. Drake-Pérez
B.M.A. Delattre
cDivision of Radiology (B.M.A.D., S.B.), Geneva University Hospitals, Geneva, Switzerland.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for B.M.A. Delattre
J. Boto
aFrom the Division of Diagnostic and Interventional Neuroradiology (M.D.-P., J.B., A.F., K.-O.L., M.I.V.), Geneva University Hospitals and Faculty of Medicine of Geneva, Geneva, Switzerland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for J. Boto
A. Fitsiori
aFrom the Division of Diagnostic and Interventional Neuroradiology (M.D.-P., J.B., A.F., K.-O.L., M.I.V.), Geneva University Hospitals and Faculty of Medicine of Geneva, Geneva, Switzerland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for A. Fitsiori
K.-O. Lovblad
aFrom the Division of Diagnostic and Interventional Neuroradiology (M.D.-P., J.B., A.F., K.-O.L., M.I.V.), Geneva University Hospitals and Faculty of Medicine of Geneva, Geneva, Switzerland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for K.-O. Lovblad
S. Boudabbous
cDivision of Radiology (B.M.A.D., S.B.), Geneva University Hospitals, Geneva, Switzerland.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for S. Boudabbous
M.I. Vargas
aFrom the Division of Diagnostic and Interventional Neuroradiology (M.D.-P., J.B., A.F., K.-O.L., M.I.V.), Geneva University Hospitals and Faculty of Medicine of Geneva, Geneva, Switzerland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for M.I. Vargas
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Warntjes JB,
    2. Leinhard OD,
    3. West J, et al
    . Rapid magnetic resonance quantification on the brain: optimization for clinical usage. Magn Reson Med 2008;60:320–29 doi:10.1002/mrm.21635 pmid:18666127
    CrossRefPubMed
  2. 2.↵
    1. Bottomley PA,
    2. Foster TH,
    3. Argersinger RE, et al
    . A review of normal tissue hydrogen NMR relaxation times and relaxation mechanisms from 1–100 MHz: dependence on tissue type, NMR frequency, temperature, species, excision, and age. Med Phys 1984;11:425–48 doi:10.1118/1.595535 pmid:6482839
    CrossRefPubMedWeb of Science
  3. 3.↵
    1. de Bazelaire CM,
    2. Duhamel GD,
    3. Rofsky NM, et al
    . MR imaging relaxation times of abdominal and pelvic tissues measured in vivo at 3.0 T: preliminary results. Radiology 2004;230:652–59 doi:10.1148/radiol.2303021331 pmid:14990831
    CrossRefPubMedWeb of Science
  4. 4.↵
    1. Bojorquez JZ,
    2. Bricq S,
    3. Acquitter C, et al
    . What are normal relaxation times of tissues at 3 T? Magn Reson Imaging 2017;35:69–80 doi:10.1016/j.mri.2016.08.021 pmid:27594531
    CrossRefPubMed
  5. 5.↵
    1. Lu H,
    2. Nagae-Poetscher LM,
    3. Golay X, et al
    . Routine clinical brain MRI sequences for use at 3.0 Tesla. J Magn Reson Imaging 2005;22:13–22 doi:10.1002/jmri.20356 pmid:15971174
    CrossRefPubMedWeb of Science
  6. 6.↵
    1. Ma D,
    2. Gulani V,
    3. Seiberlich N, et al
    . Magnetic resonance fingerprinting. Nature 2013;495:187–92 doi:10.1038/nature11971 pmid:23486058
    CrossRefPubMedWeb of Science
  7. 7.↵
    European Society of Radiology (ESR). Magnetic resonance fingerprinting: a promising new approach to obtain standardized imaging biomarkers from MRI. Insights Imaging 2015;6:163–65 doi:10.1007/s13244-015-0403-3 pmid:25800993
    CrossRefPubMed
  8. 8.↵
    1. Badve C,
    2. Yu A,
    3. Dastmalchian S, et al
    . MR fingerprinting of adult brain tumors: initial experience. AJNR Am J Neuroradiol 2017;38:492–99 doi:10.3174/ajnr.A5035 pmid:28034994
    Abstract/FREE Full Text
  9. 9.↵
    1. Chen Y,
    2. Jiang Y,
    3. Pahwa S, et al
    . MR fingerprinting for rapid quantitative abdominal imaging. Radiology 2016;279:278–86 doi:10.1148/radiol.2016152037 pmid:26794935
    CrossRefPubMed
  10. 10.↵
    1. Granberg T,
    2. Uppman M,
    3. Hashim F, et al
    . Clinical feasibility of synthetic MRI in multiple sclerosis: a diagnostic and volumetric validation study. AJNR Am J Neuroradiol 2016;37:1023–29 doi:10.3174/ajnr.A4665 pmid:26797137
    Abstract/FREE Full Text
  11. 11.↵
    1. West J,
    2. Warntjes JB,
    3. Lundberg P
    . Novel whole brain segmentation and volume estimation using quantitative MRI. Eur Radiol 2012;22:998–1007 doi:10.1007/s00330-011-2336-7 pmid:22113264
    CrossRefPubMed
  12. 12.↵
    1. Vågberg M,
    2. Lindqvist T,
    3. Ambarki K, et al
    . Automated determination of brain parenchymal fraction in multiple sclerosis. AJNR Am J Neuroradiol 2013;34:498–504 doi:10.3174/ajnr.A3262 pmid:22976234
    Abstract/FREE Full Text
  13. 13.↵
    1. Tanenbaum LN,
    2. Tsiouris AJ,
    3. Johnson AN, et al
    . Synthetic MRI for clinical neuroimaging: results of the Magnetic Resonance Image Compilation (MAGiC) prospective, multicenter, multireader trial. AJNR Am J Neuroradiol 2017;38:1103–10 doi:10.3174/ajnr.A5227 pmid:28450439
    Abstract/FREE Full Text
  14. 14.↵
    1. Blystad I,
    2. Warntjes JB,
    3. Smedby O, et al
    . Synthetic MRI of the brain in a clinical setting. Acta Radiol 2012;53:1158–63 doi:10.1258/ar.2012.120195 pmid:23024181
    CrossRefPubMed
  15. 15.↵
    1. Deshmane A,
    2. McGivney D,
    3. Badve C
    . Accurate synthetic FLAIR images using partial volume corrected MR fingerprinting. In: Proceedings of the Annual Meeting and Exhibition of International Society for Magnetic Resonance in Medicine, Singapore. May 7–13, 2016
  16. 16.↵
    User Manual, Version 8.0.1, SyMRI 8. Linköping: SyntheticMR AB; 2016–10-26
  17. 17.↵
    1. Pfirrmann CW,
    2. Metzdorf A,
    3. Zanetti M, et al
    . Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine (Phila Pa 1976) 2001;26:1873–78 doi:10.1097/00007632-200109010-00011 pmid:11568697
    CrossRefPubMed
  18. 18.↵
    IBM SPSS Statistics (for Windows) [computer program]. Version 22.0. Armonk, New York: IBM Corp; 2013
  19. 19.↵
    1. Krauss W,
    2. Gunnarsson M,
    3. Andersson T, et al
    . Accuracy and reproducibility of a quantitative magnetic resonance imaging method for concurrent measurements of tissue relaxation times and proton density. Magn Reson Imaging 2015;33:584–91 doi:10.1016/j.mri.2015.02.013 pmid:25708264
    CrossRefPubMed
  20. 20.↵
    1. Shin W,
    2. Gu H,
    3. Yang Y
    . Fast high-resolution T1 mapping using inversion-recovery Look-Locker echo-planar imaging at steady state: optimization for accuracy and reliability. Magn Reson Med 2009;61:899–906 doi:10.1002/mrm.21836 pmid:19195021
    CrossRefPubMed
  21. 21.↵
    1. Liberman G,
    2. Louzoun Y,
    3. Ben Bashat D
    . T1 mapping using variable flip angle SPGR data with flip angle correction. J Magn Reson Imaging 2014;40:171–80 doi:10.1002/jmri.24373 pmid:24990618
    CrossRefPubMed
  22. 22.↵
    1. Smith SA,
    2. Edden RA,
    3. Farrell JA, et al
    . Measurement of T1 and T2 in the cervical spinal cord at 3 Tesla. Magn Reson Med 2008;60:213–19 doi:10.1002/mrm.21596 pmid:18581383
    CrossRefPubMed
  23. 23.↵
    1. Massire A,
    2. Taso M,
    3. Besson P, et al
    . High-resolution multi-parametric quantitative magnetic resonance imaging of the human cervical spinal cord at 7T. Neuroimage 2016;143:58–69 doi:10.1016/j.neuroimage.2016.08.055 pmid:27574985
    CrossRefPubMed
  24. 24.↵
    1. Diaz E,
    2. Morales H
    . Spinal cord anatomy and clinical syndromes. Semin Ultrasound CT MR 2016;37:360–71 doi:10.1053/j.sult.2016.05.002 pmid:27616310
    CrossRefPubMed
  25. 25.↵
    1. Hagiwara A,
    2. Hori M,
    3. Yokoyama K, et al
    . Utility of a multiparametric quantitative MRI model that assesses myelin and edema for evaluating plaques, periplaque white matter, and normal-appearing white matter in patients with multiple sclerosis: a feasibility study. AJNR Am J Neuroradiol 2017;38:237–42 doi:10.3174/ajnr.A4977 pmid:27789453
    Abstract/FREE Full Text
  26. 26.↵
    1. Warntjes M,
    2. Engström M,
    3. Tisell A, et al
    . Modeling the presence of myelin and edema in the brain based on multi-parametric quantitative MRI. Front Neurol 2016;7:16 doi:10.3389/fneur.2016.00016 pmid:26925030
    CrossRefPubMed
  27. 27.↵
    1. Hagiwara A,
    2. Warntjes M,
    3. Hori M, et al
    . SyMRI of the brain: rapid quantification of relaxation rates and proton density, with synthetic MRI, automatic brain segmentation, and myelin measurement. Invest Radiol 2017;52:647–57 doi:10.1097/RLI.0000000000000365 pmid:28257339
    CrossRefPubMed
  28. 28.↵
    1. Hwang D,
    2. Kim S,
    3. Abeydeera NA, et al
    . Quantitative magnetic resonance imaging of the lumbar intervertebral discs. Quant Imaging Med Surg 2016;6:744–55 doi:10.21037/qims.2016.12.09 pmid:28090450
    CrossRefPubMed
  29. 29.↵
    1. Chatani K,
    2. Kusaka Y,
    3. Mifune T, et al
    . Topographic differences of 1H-NMR relaxation times (T1, T2) in the normal intervertebral disc and its relationship to water content. Spine (Phila Pa 1976) 1993;18:2271–75 doi:10.1097/00007632-199311000-00022 pmid:8278845
    CrossRefPubMed
  30. 30.↵
    1. Boos N,
    2. Wallin A,
    3. Schmucker T, et al
    . Quantitative MR imaging of lumbar intervertebral disc and vertebral bodies: methodology, reproducibility, and preliminary results. Magn Reson Imaging 1994;12:577–87 doi:10.1016/0730-725X(94)92452-X pmid:8057762
    CrossRefPubMedWeb of Science
  31. 31.↵
    1. Marinelli NL,
    2. Haughton VM,
    3. Muñoz A, et al
    . T2 relaxation times of intervertebral disc tissue correlated with water content and proteoglycan content. Spine (Phila Pa 1976) 2009;34:520–24 doi:10.1097/BRS.0b013e318195dd44 pmid:19247172
    CrossRefPubMed
  32. 32.↵
    1. Grunert P,
    2. Hudson KD,
    3. Macielak MR, et al
    . Assessment of intervertebral disc degeneration based on quantitative magnetic resonance imaging analysis: an in vivo study. Spine (Phila Pa 1976) 2014;39:E369–78 doi:10.1097/BRS.0000000000000194 pmid:24384655
    CrossRefPubMed
  33. 33.↵
    1. Driscoll SJ,
    2. Zhong W,
    3. Torriani M, et al
    . In-vivo T2-relaxation times of asymptomatic cervical intervertebral discs. Skeletal Radiol 2016;45:393–400 doi:10.1007/s00256-015-2307-1 pmid:26643385
    CrossRefPubMed
  34. 34.↵
    1. Stelzeneder D,
    2. Welsch GH,
    3. Kovács BK, et al
    . Quantitative T2 evaluation at 3.0T compared to morphological grading of the lumbar intervertebral disc: a standardized evaluation approach in patients with low back pain. Eur J Radiol 2012;81:324–30 doi:10.1016/j.ejrad.2010.12.093 pmid:21315527
    CrossRefPubMed
  35. 35.↵
    1. Wang G,
    2. El-Sharkawy AM,
    3. Edelstein WA, et al
    . Measuring T2 and T1, and imaging T2 without spin echoes. J Magn Reson 2012;214:273–80 doi:10.1016/j.jmr.2011.11.016 pmid:22197502
    CrossRefPubMed
  36. 36.↵
    1. Pai A,
    2. Li X,
    3. Majumdar S
    . A comparative study at 3 T of sequence dependence of T2 quantitation in the knee. Magn Reson Imaging 2008;26:1215–20 doi:10.1016/j.mri.2008.02.017 pmid:18502073
    CrossRefPubMedWeb of Science
  37. 37.↵
    1. Le Ster C,
    2. Lasbleiz J,
    3. Kannengiesser S, et al
    . A fast method for the quantification of fat fraction and relaxation times: comparison of five sites of bone marrow. Magn Reson Imaging 2017;39:157–61 doi:10.1016/j.mri.2017.03.001 pmid:28263827
    CrossRefPubMed
  38. 38.↵
    1. Schick F,
    2. Bongers H,
    3. Jung W, et al
    . Proton relaxation times in human red bone marrow by volume selective magnetic resonance spectroscopy. Appl Magn Reson 1992;3:947–63 doi:10.1007/BF03166165
    CrossRef
  39. 39.↵
    1. Baum T,
    2. Yap SP,
    3. Dieckmeyer M, et al
    . Assessment of whole spine vertebral bone marrow fat using chemical shift-encoding based water-fat MRI. J Magn Reson Imaging 2015;42:1018–23 doi:10.1002/jmri.24854 pmid:25639780
    CrossRefPubMed
  40. 40.↵
    1. Warntjes JB,
    2. Engström M,
    3. Tisell A, et al
    . Brain characterization using normalized quantitative magnetic resonance imaging. PLoS One 2013;8:e70864 doi:10.1371/journal.pone.0070864 pmid:23940653
    CrossRefPubMed
  41. 41.↵
    1. Engström M,
    2. Warntjes JB,
    3. Tisell A, et al
    . Multi-parametric representation of voxel-based quantitative magnetic resonance imaging. PLoS One 2014;9:e111688 doi:10.1371/journal.pone.0111688 pmid:25393722
    CrossRefPubMed
  42. 42.↵
    1. West J,
    2. Blystad I,
    3. Engström M, et al
    . Application of quantitative MRI for brain tissue segmentation at 1.5 T and 3.0 T field strengths. PLoS One 2013;8:e74795 doi:10.1371/journal.pone.0074795 pmid:24066153
    CrossRefPubMed
  43. 43.
    1. Chen L,
    2. Bernstein M,
    3. Huston J, et al
    . Measurements of T1 relaxation times at 3.0 T: implications for clinical MRA. In: Proceedings of the International Society for Magnetic Resonance in Medicine 9th Scientific Meeting & Exhibition, Glasgow, Scotland. April 21–27, 2001
  44. 44.
    1. Chen C,
    2. Huang M,
    3. Han Z, et al
    . Quantitative T2 magnetic resonance imaging compared to morphological grading of the early cervical intervertebral disc degeneration: an evaluation approach in asymptomatic young adults. PLoS One 2014;9:e87856 doi:10.1371/journal.pone.0087856 pmid:24498384
    CrossRefPubMed
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 39 (4)
American Journal of Neuroradiology
Vol. 39, Issue 4
1 Apr 2018
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Normal Values of Magnetic Relaxation Parameters of Spine Components with the Synthetic MRI Sequence
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
M. Drake-Pérez, B.M.A. Delattre, J. Boto, A. Fitsiori, K.-O. Lovblad, S. Boudabbous, M.I. Vargas
Normal Values of Magnetic Relaxation Parameters of Spine Components with the Synthetic MRI Sequence
American Journal of Neuroradiology Apr 2018, 39 (4) 788-795; DOI: 10.3174/ajnr.A5566

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Normal Values of Magnetic Relaxation Parameters of Spine Components with the Synthetic MRI Sequence
M. Drake-Pérez, B.M.A. Delattre, J. Boto, A. Fitsiori, K.-O. Lovblad, S. Boudabbous, M.I. Vargas
American Journal of Neuroradiology Apr 2018, 39 (4) 788-795; DOI: 10.3174/ajnr.A5566
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • Materials and Methods
    • Results
    • Discussion
    • Conclusions
    • Acknowledgments
    • References
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • fMRI-Based CSF Flow Quantification Identifies Cardiac Pulsatility as the Dominant Driver Over Respiratory and Slow Vasomotion Cycles
  • Validation of a Denoising Method Using Deep Learning-Based Reconstruction to Quantify Multiple Sclerosis Lesion Load on Fast FLAIR Imaging
  • Feasibility of a Synthetic MR Imaging Sequence for Spine Imaging
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • Management Outcomes For VO Spine Biopsy
  • Characteristics of SIH Type I Culprit Lesions
  • Advanced Imaging of Type 2 Spinal CSF Leaks
Show more Spine Imaging and Spine Image-Guided Interventions

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire