Research ArticleAdult Brain
Open Access
Deep-Learning Convolutional Neural Networks Accurately Classify Genetic Mutations in Gliomas
P. Chang, J. Grinband, B.D. Weinberg, M. Bardis, M. Khy, G. Cadena, M.-Y. Su, S. Cha, C.G. Filippi, D. Bota, P. Baldi, L.M. Poisson, R. Jain and D. Chow
American Journal of Neuroradiology July 2018, 39 (7) 1201-1207; DOI: https://doi.org/10.3174/ajnr.A5667
P. Chang
aFrom the Department of Radiology (P.C., S.C.), University of California, San Francisco, San Francisco, California
J. Grinband
bDepartment of Radiology (J.G.), Columbia University, New York, New York
B.D. Weinberg
cDepartment of Radiology (B.D.W.), Emory University School of Medicine, Atlanta, Georgia
M. Bardis
dDepartments of Radiology (M.B., M.K., M.-Y.S., D.C.)
M. Khy
dDepartments of Radiology (M.B., M.K., M.-Y.S., D.C.)
G. Cadena
eNeurosurgery (G.C.)
M.-Y. Su
dDepartments of Radiology (M.B., M.K., M.-Y.S., D.C.)
S. Cha
aFrom the Department of Radiology (P.C., S.C.), University of California, San Francisco, San Francisco, California
C.G. Filippi
hDepartment of Radiology (C.G.F.), North Shore University Hospital, Long Island, New York
D. Bota
fNeuro-Oncology (D.B.)
P. Baldi
gSchool of Information and Computer Sciences (P.B.), University of California, Irvine, Irvine, California
L.M. Poisson
iDepartment of Public Health Sciences (L.M.P.), Henry Ford Health System, Detroit, Michigan
R. Jain
jDepartments of Radiology and Neurosurgery (R.J.), New York University, New York, New York.
D. Chow
dDepartments of Radiology (M.B., M.K., M.-Y.S., D.C.)

References
- 1.↵
- 2.↵
- Nobusawa S,
- Watanabe T,
- Kleihues P, et al
- 3.↵
- Yan H,
- Parsons DW,
- Jin G, et al
- 4.↵
- van den Bent MJ,
- Brandes AA,
- Taphoorn MJ, et al
- 5.↵
- Cairncross G,
- Wang M,
- Shaw E, et al
- 6.↵
- Hegi ME,
- Diserens AC,
- Gorlia T, et al
- 7.↵
- 8.↵
- Gill BJ,
- Pisapia DJ,
- Malone HR, et al
- 9.↵
- Belden CJ,
- Valdes PA,
- Ran C, et al
- 10.↵National Cancer Institute. Wiki for the VASARI feature set. https://wiki.nci.nih.gov/display/CIP/VASARI. Accessed August 30, 2017
- 11.↵
- 12.↵
- Clark K,
- Vendt B,
- Smith K, et al
- 13.↵
- 14.↵
- Jenkinson M,
- Smith S
- 15.↵
- Jenkinson M,
- Bannister P,
- Brady M, et al
- 16.↵
- Crimi A,
- Menze B,
- Maier O, et al.
- Chang PD
- 17.↵
- Arbib MA
- LeCun Y,
- Bengio Y
- 18.↵
- Gorlia T,
- van den Bent MJ,
- Hegi ME, et al
- 19.↵
- 20.↵
- 21.↵
- 22.↵
- Kassner A,
- Thornhill RE
- 23.↵
- Simonyan K,
- Vedaldi A,
- Zisserman A
- 24.↵
- He K,
- Zhang X,
- Ren S, et al
- 25.↵
- He K,
- Zhang X,
- Ren S, et al
- 26.↵
- Krizhevsky A,
- Sutskever I,
- Hinton G
- 27.↵
- 28.↵
- 29.↵
- He K,
- Zhang X,
- Ren S, et al
- 30.↵
- 31.↵
- 32.↵
- Chang PD,
- Malone HR,
- Bowden SG, et al
- 33.↵
- 34.↵
- Chang K,
- Bai HX,
- Zhou H, et al
- 35.↵
- 36.↵
- Fleet D,
- Pajdla T,
- Schiele B, et al.
- Zeiler MD,
- Fergus R
- 37.↵
- Carrillo JA,
- Lai A,
- Nghiemphu PL, et al
- 38.↵
- 39.↵
- 40.↵
- Metellus P,
- Coulibaly B,
- Colin C, et al
- 41.↵
- 42.↵
- Johnson DR,
- Diehn FE,
- Giannini C, et al
- 43.↵
- Ellingson BM,
- Lai A,
- Harris RJ, et al
- 44.↵
- 45.↵
- 46.↵
- Eoli M,
- Menghi F,
- Bruzzone MG, et al
In this issue
American Journal of Neuroradiology
Vol. 39, Issue 7
1 Jul 2018
Advertisement
P. Chang, J. Grinband, B.D. Weinberg, M. Bardis, M. Khy, G. Cadena, M.-Y. Su, S. Cha, C.G. Filippi, D. Bota, P. Baldi, L.M. Poisson, R. Jain, D. Chow
Deep-Learning Convolutional Neural Networks Accurately Classify Genetic Mutations in Gliomas
American Journal of Neuroradiology Jul 2018, 39 (7) 1201-1207; DOI: 10.3174/ajnr.A5667
0 Responses
Deep-Learning Convolutional Neural Networks Accurately Classify Genetic Mutations in Gliomas
P. Chang, J. Grinband, B.D. Weinberg, M. Bardis, M. Khy, G. Cadena, M.-Y. Su, S. Cha, C.G. Filippi, D. Bota, P. Baldi, L.M. Poisson, R. Jain, D. Chow
American Journal of Neuroradiology Jul 2018, 39 (7) 1201-1207; DOI: 10.3174/ajnr.A5667
Jump to section
Related Articles
Cited By...
- Aperiodic neural dynamics define a novel signature of glioma-induced excitation-inhibition dysregulation
- Integration of MRI radiomics and germline genetics to predict the IDH mutation status of gliomas
- Path2Omics: Enhanced transcriptomic and methylation prediction accuracy from tumor histopathology
- Imaging Genomics of Glioma Revisited: Analytic Methods to Understand Spatial and Temporal Heterogeneity
- Biologically-informed deep neural networks provide quantitative assessment of intratumoral heterogeneity in post-treatment glioblastoma
- Prediction of cancer treatment response from histopathology images through imputed transcriptomics
- Clinical Knowledge and Reasoning Abilities of AI Large Language Models in Anesthesiology: A Comparative Study on the ABA Exam
- IDH and 1p19q Diagnosis in Diffuse Glioma from Preoperative MRI Using Artificial Intelligence
- A Novel Fully Automated MRI-Based Deep Learning Method for Classification of IDH Mutation Status in Brain Gliomas
- Privacy Risks of Whole-Slide Image Sharing in Digital Pathology
- Diffusion Weighted MRI could precisely predict the pTERT mutation status of GBM using a residual convolutional neural network
- Prediction of cancer treatment response from histopathology images through imputed transcriptomics
- Evaluating the Clinical Utility of Artificial Intelligence Assistance and its Explanation on Glioma Grading Task
- Evolving Role and Translation of Radiomics and Radiogenomics in Adult and Pediatric Neuro-Oncology
- MRI-Based Deep-Learning Method for Determining Glioma MGMT Promoter Methylation Status
- Development and Validation of a Deep Learning-Based Model to Distinguish Glioblastoma from Solitary Brain Metastasis Using Conventional MR Images
- Improved Glioma Grading Using Deep Convolutional Neural Networks
- A Combined Deep CNN-LSTM Network for the Detection of Novel Coronavirus (COVID-19) Using X-ray Images
- neoDL: A novel neoantigen intrinsic feature-based deep learning model identifies IDH wild-type glioblastomas with the longest survival
- Neuro-Oncology and Radiogenomics: Time to Integrate?
- Machine learning assisted DSC-MRI radiomics as a tool for glioma classification by grade and mutation status
- Artificial Intelligence in Neuroradiology: Current Status and Future Directions
- A Novel Fully Automated MRI-Based Deep Learning Method for Classification of 1P/19Q Co-Deletion Status in Brain Gliomas
- Brain Tumor IDH, 1p/19q, and MGMT Molecular Classification Using MRI-based Deep Learning: Effect of Motion and Motion Correction
- MRI-BASED DEEP LEARNING METHOD FOR DETERMINING METHYLATION STATUS OF THE O6-METHYLGUANINE-DNA METHYLTRANSFERASE PROMOTER OUTPERFORMS TISSUE BASED METHODS IN BRAIN GLIOMAS
- Pan-cancer computational histopathology reveals mutations, tumor composition and prognosis
- Prediction of Tumor Grade and Nodal Status in Oropharyngeal and Oral Cavity Squamous-cell Carcinoma Using a Radiomic Approach
- Predicting the 1p/19q Codeletion Status of Presumed Low-Grade Glioma with an Externally Validated Machine Learning Algorithm
- Randomised controlled trial of WISENSE, a real-time quality improving system for monitoring blind spots during esophagogastroduodenoscopy
- Transcriptomic learning for digital pathology
- Classification of Brain Tumor IDH Status using MRI and Deep Learning
This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.
More in this TOC Section
Similar Articles
Advertisement