Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Research ArticleAdult Brain
Open Access

Deep-Learning Convolutional Neural Networks Accurately Classify Genetic Mutations in Gliomas

P. Chang, J. Grinband, B.D. Weinberg, M. Bardis, M. Khy, G. Cadena, M.-Y. Su, S. Cha, C.G. Filippi, D. Bota, P. Baldi, L.M. Poisson, R. Jain and D. Chow
American Journal of Neuroradiology July 2018, 39 (7) 1201-1207; DOI: https://doi.org/10.3174/ajnr.A5667
P. Chang
aFrom the Department of Radiology (P.C., S.C.), University of California, San Francisco, San Francisco, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for P. Chang
J. Grinband
bDepartment of Radiology (J.G.), Columbia University, New York, New York
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for J. Grinband
B.D. Weinberg
cDepartment of Radiology (B.D.W.), Emory University School of Medicine, Atlanta, Georgia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for B.D. Weinberg
M. Bardis
dDepartments of Radiology (M.B., M.K., M.-Y.S., D.C.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for M. Bardis
M. Khy
dDepartments of Radiology (M.B., M.K., M.-Y.S., D.C.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for M. Khy
G. Cadena
eNeurosurgery (G.C.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for G. Cadena
M.-Y. Su
dDepartments of Radiology (M.B., M.K., M.-Y.S., D.C.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for M.-Y. Su
S. Cha
aFrom the Department of Radiology (P.C., S.C.), University of California, San Francisco, San Francisco, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for S. Cha
C.G. Filippi
hDepartment of Radiology (C.G.F.), North Shore University Hospital, Long Island, New York
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for C.G. Filippi
D. Bota
fNeuro-Oncology (D.B.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for D. Bota
P. Baldi
gSchool of Information and Computer Sciences (P.B.), University of California, Irvine, Irvine, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for P. Baldi
L.M. Poisson
iDepartment of Public Health Sciences (L.M.P.), Henry Ford Health System, Detroit, Michigan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for L.M. Poisson
R. Jain
jDepartments of Radiology and Neurosurgery (R.J.), New York University, New York, New York.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for R. Jain
D. Chow
dDepartments of Radiology (M.B., M.K., M.-Y.S., D.C.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for D. Chow
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Cohen AL,
    2. Holmen SL,
    3. Colman H
    . IDH1 and IDH2 mutations in gliomas. Curr Neurol Neurosci Rep 2013;13:345 doi:10.1007/s11910-013-0345-4 pmid:23532369
    CrossRefPubMed
  2. 2.↵
    1. Nobusawa S,
    2. Watanabe T,
    3. Kleihues P, et al
    . IDH1 mutations as molecular signature and predictive factor of secondary glioblastomas. Clin Cancer Res 2009;15:6002–07 doi:10.1158/1078-0432.CCR-09-0715 pmid:19755387
    Abstract/FREE Full Text
  3. 3.↵
    1. Yan H,
    2. Parsons DW,
    3. Jin G, et al
    . IDH1 and IDH2 mutations in gliomas. N Engl J Med 2009;360:765–73 doi:10.1056/NEJMoa0808710 pmid:19228619
    CrossRefPubMedWeb of Science
  4. 4.↵
    1. van den Bent MJ,
    2. Brandes AA,
    3. Taphoorn MJ, et al
    . Adjuvant procarbazine, lomustine, and vincristine chemotherapy in newly diagnosed anaplastic oligodendroglioma: long-term follow-up of EORTC brain tumor group study 26951. J Clin Oncol 2013;31:344–50 doi:10.1200/JCO.2012.43.2229 pmid:23071237
    Abstract/FREE Full Text
  5. 5.↵
    1. Cairncross G,
    2. Wang M,
    3. Shaw E, et al
    . Phase III trial of chemoradiotherapy for anaplastic oligodendroglioma: long-term results of RTOG 9402. J Clin Oncol 2013;31:337–43 doi:10.1200/JCO.2012.43.2674 pmid:23071247
    Abstract/FREE Full Text
  6. 6.↵
    1. Hegi ME,
    2. Diserens AC,
    3. Gorlia T, et al
    . MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 2005;352:997–1003 doi:10.1056/NEJMoa043331 pmid:15758010
    CrossRefPubMedWeb of Science
  7. 7.↵
    1. Louis DN,
    2. Perry A,
    3. Reifenberger G, et al
    . The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol 2016;131:803–20 doi:10.1007/s00401-016-1545-1 pmid:27157931
    CrossRefPubMed
  8. 8.↵
    1. Gill BJ,
    2. Pisapia DJ,
    3. Malone HR, et al
    . MRI-localized biopsies reveal subtype-specific differences in molecular and cellular composition at the margins of glioblastoma. Proc Natl Acad Sci U S A 2014;111:12550–55 doi:10.1073/pnas.1405839111 pmid:25114226
    Abstract/FREE Full Text
  9. 9.↵
    1. Belden CJ,
    2. Valdes PA,
    3. Ran C, et al
    . Genetics of glioblastoma: a window into its imaging and histopathologic variability. Radiographics 2011;31:1717–40 doi:10.1148/rg.316115512 pmid:21997991
    CrossRefPubMedWeb of Science
  10. 10.↵
    National Cancer Institute. Wiki for the VASARI feature set. https://wiki.nci.nih.gov/display/CIP/VASARI. Accessed August 30, 2017
  11. 11.↵
    1. LeCun Y,
    2. Bengio Y,
    3. Hinton G
    . Deep learning. Nature 2015;521:436–44 doi:10.1038/nature14539 pmid:26017442
    CrossRefPubMed
  12. 12.↵
    1. Clark K,
    2. Vendt B,
    3. Smith K, et al
    . The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository. J Digit Imaging 2013;26:1045–57 doi:10.1007/s10278-013-9622-7 pmid:23884657
    CrossRefPubMedWeb of Science
  13. 13.↵
    1. Ceccarelli M,
    2. Barthel FP,
    3. Malta TM, et al
    . Molecular profiling reveals biologically discrete subsets and pathways of progression in diffuse glioma. Cell 2016;164:550–63 doi:10.1016/j.cell.2015.12.028 pmid:26824661
    CrossRefPubMed
  14. 14.↵
    1. Jenkinson M,
    2. Smith S
    . A global optimisation method for robust affine registration of brain images. Med Image Anal 2001;5:143–56 doi:10.1016/S1361-8415(01)00036-6 pmid:11516708
    CrossRefPubMedWeb of Science
  15. 15.↵
    1. Jenkinson M,
    2. Bannister P,
    3. Brady M, et al
    . Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 2002;17:825–41 doi:10.1006/nimg.2002.1132 pmid:12377157
    CrossRefPubMedWeb of Science
  16. 16.↵
    1. Crimi A,
    2. Menze B,
    3. Maier O, et al.
    1. Chang PD
    . Fully convolutional deep residual neural networks for brain tumor segmentation. In: Crimi A, Menze B, Maier O, et al., eds. Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: Second International Workshop, BrainLes 2016, with the Challenges on BRATS, ISLES and mTOP 2016, Held in Conjunction with MICCAI 2016, Athens, Greece, October 17, 2016, Revised Selected Papers. Cham: Springer-Verlag International Publishing; 2016:108–18
  17. 17.↵
    1. Arbib MA
    1. LeCun Y,
    2. Bengio Y
    . Convolutional networks for images, speech, and time-series. In: Arbib MA, ed. The Handbook of Brain Theory and Neural Networks. Cambridge: MIT Press; 1998:255–58
  18. 18.↵
    1. Gorlia T,
    2. van den Bent MJ,
    3. Hegi ME, et al
    . Nomograms for predicting survival of patients with newly diagnosed glioblastoma: prognostic factor analysis of EORTC and NCIC trial 26981–22981/CE.3. Lancet Oncol 2008;9:29–38 doi:10.1016/S1470-2045(07)70384-4 pmid:18082451
    CrossRefPubMedWeb of Science
  19. 19.↵
    1. Ryu YJ,
    2. Choi SH,
    3. Park SJ, et al
    . Glioma: application of whole-tumor texture analysis of diffusion-weighted imaging for the evaluation of tumor heterogeneity. PLoS One 2014;9:e108335 doi:10.1371/journal.pone.0108335 pmid:25268588
    CrossRefPubMed
  20. 20.↵
    1. Drabycz S,
    2. Roldán G,
    3. de Robles P, et al
    . An analysis of image texture, tumor location, and MGMT promoter methylation in glioblastoma using magnetic resonance imaging. Neuroimage 2010;49:1398–405 doi:10.1016/j.neuroimage.2009.09.049 pmid:19796694
    CrossRefPubMed
  21. 21.↵
    1. Kanas VG,
    2. Zacharaki EI,
    3. Thomas GA, et al
    . Learning MRI-based classification models for MGMT methylation status prediction in glioblastoma. Comput Methods Programs Biomed 2017;140:249–57 doi:10.1016/j.cmpb.2016.12.018 pmid:28254081
    CrossRefPubMed
  22. 22.↵
    1. Kassner A,
    2. Thornhill RE
    . Texture analysis: a review of neurologic MR imaging applications. AJNR Am J Neuroradiol 2010;31:809–16 doi:10.3174/ajnr.A2061 pmid:20395383
    Abstract/FREE Full Text
  23. 23.↵
    1. Simonyan K,
    2. Vedaldi A,
    3. Zisserman A
    . Deep inside convolutional networks: visualising image classification models and saliency maps. CoRR 2013;abs/1312.6034. https://arxiv.org/abs/1312.6034. Accessed August 30, 2017
  24. 24.↵
    1. He K,
    2. Zhang X,
    3. Ren S, et al
    . Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. In: Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chili. December 7–13, 2015:1026–34
  25. 25.↵
    1. He K,
    2. Zhang X,
    3. Ren S, et al
    . Deep residual learning for image recognition. CoRR 2015;abs/1512.03385. https://arxiv.org/abs/1512.03385. Accessed August 30, 2017
  26. 26.↵
    1. Krizhevsky A,
    2. Sutskever I,
    3. Hinton G
    . ImageNet classification with deep convolutional neural networks. https://www.nvidia.cn/content/tesla/pdf/machine-learning/imagenet-classification-with-deep-convolutional-nn.pdf. Accessed August 30, 2017
  27. 27.↵
    1. Setio AA,
    2. Ciompi F,
    3. Litjens G, et al
    . Pulmonary nodule detection in CT images: false positive reduction using multi-view convolutional networks. IEEE Trans Med Imaging 2016;35:1160–69 doi:10.1109/TMI.2016.2536809 pmid:26955024
    CrossRefPubMed
  28. 28.↵
    1. Roth HR,
    2. Lu L,
    3. Liu J, et al
    . Improving computer-aided detection using convolutional neural networks and random view aggregation. IEEE Trans Med Imaging 2016;35:1170–81 doi:10.1109/TMI.2015.2482920 pmid:26441412
    CrossRefPubMed
  29. 29.↵
    1. He K,
    2. Zhang X,
    3. Ren S, et al
    . Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Nevada. June 27–30, 2016
  30. 30.↵
    1. Lakhani P,
    2. Sundaram B
    . Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks. Radiology 2017;284:574–82 doi:10.1148/radiol.2017162326 pmid:28436741
    CrossRefPubMed
  31. 31.↵
    1. Pande T,
    2. Cohen C,
    3. Pai M, et al
    . Computer-aided detection of pulmonary tuberculosis on digital chest radiographs: a systematic review. Int J Tuberc Lung Dis 2016;20:1226–30 doi:10.5588/ijtld.15.0926 pmid:27510250
    CrossRefPubMed
  32. 32.↵
    1. Chang PD,
    2. Malone HR,
    3. Bowden SG, et al
    . A multiparametric model for mapping cellularity in glioblastoma using radiographically localized biopsies. AJNR Am J Neuroradiol 2017;38:890–98 doi:10.3174/ajnr.A5112 pmid:28255030
    Abstract/FREE Full Text
  33. 33.↵
    1. Zhang W,
    2. Li R,
    3. Deng H, et al
    . Deep convolutional neural networks for multi-modality isointense infant brain image segmentation. Neuroimage 2015;108:214–24 doi:10.1016/j.neuroimage.2014.12.061 pmid:25562829
    CrossRefPubMed
  34. 34.↵
    1. Chang K,
    2. Bai HX,
    3. Zhou H, et al
    . Residual convolutional neural network for the determination of IDH status in low- and high-grade gliomas from MR imaging. Clin Cancer Res 2018;24:1073–81 doi:10.1158/1078-0432.CCR-17-2236 pmid:29167275
    Abstract/FREE Full Text
  35. 35.↵
    1. Korfiatis P,
    2. Kline TL,
    3. Lachance DH, et al
    . Residual deep convolutional neural network predicts MGMT methylation status. J Digit Imaging 2017;30:622–28 doi:10.1007/s10278-017-0009-z pmid:28785873
    CrossRefPubMed
  36. 36.↵
    1. Fleet D,
    2. Pajdla T,
    3. Schiele B, et al.
    1. Zeiler MD,
    2. Fergus R
    . Visualizing and understanding convolutional networks. In: Fleet D, Pajdla T, Schiele B, et al., eds. Proceedings of the European Conference on Computer Vision, Zurich, Switzerland. September 6–12, 2014
  37. 37.↵
    1. Carrillo JA,
    2. Lai A,
    3. Nghiemphu PL, et al
    . Relationship between tumor enhancement, edema, IDH1 mutational status, MGMT promoter methylation, and survival in glioblastoma. AJNR Am J Neuroradiol 2012;33:1349–55 doi:10.3174/ajnr.A2950 pmid:22322613
    Abstract/FREE Full Text
  38. 38.↵
    1. Qi S,
    2. Yu L,
    3. Li H, et al
    . Isocitrate dehydrogenase mutation is associated with tumor location and magnetic resonance imaging characteristics in astrocytic neoplasms. Oncol Lett 2014;7:1895–902 doi:10.3892/ol.2014.2013 pmid:24932255
    CrossRefPubMed
  39. 39.↵
    1. Sonoda Y,
    2. Shibahara I,
    3. Kawaguchi T, et al
    . Association between molecular alterations and tumor location and MRI characteristics in anaplastic gliomas. Brain Tumor Pathol 2015;32:99–104 doi:10.1007/s10014-014-0211-3 pmid:25537428
    CrossRefPubMed
  40. 40.↵
    1. Metellus P,
    2. Coulibaly B,
    3. Colin C, et al
    . Absence of IDH mutation identifies a novel radiologic and molecular subtype of WHO grade II gliomas with dismal prognosis. Acta Neuropathol 2010;120:719–29 doi:10.1007/s00401-010-0777-8 pmid:21080178
    CrossRefPubMedWeb of Science
  41. 41.↵
    1. Xiong J,
    2. Tan W,
    3. Wen J, et al
    . Combination of diffusion tensor imaging and conventional MRI correlates with isocitrate dehydrogenase 1/2 mutations but not 1p/19q genotyping in oligodendroglial tumours. Eur Radiol 2016;26:1705–15 doi:10.1007/s00330-015-4025-4 pmid:26396108
    CrossRefPubMed
  42. 42.↵
    1. Johnson DR,
    2. Diehn FE,
    3. Giannini C, et al
    . Genetically defined oligodendroglioma is characterized by indistinct tumor borders at MRI. AJNR Am J Neuroradiol 2017;38:678–84 doi:10.3174/ajnr.A5070 pmid:28126746
    Abstract/FREE Full Text
  43. 43.↵
    1. Ellingson BM,
    2. Lai A,
    3. Harris RJ, et al
    . Probabilistic radiographic atlas of glioblastoma phenotypes. AJNR Am J Neuroradiol 2013;34:533–40 doi:10.3174/ajnr.A3253 pmid:22997168
    Abstract/FREE Full Text
  44. 44.↵
    1. Paldor I,
    2. Pearce FC,
    3. Drummond KJ, et al
    . Frontal glioblastoma multiforme may be biologically distinct from non-frontal and multilobar tumors. J Clin Neurosci 2016;34:128–32 doi:10.1016/j.jocn.2016.05.017 pmid:27593971
    CrossRefPubMed
  45. 45.↵
    1. Moon WJ,
    2. Choi JW,
    3. Roh HG, et al
    . Imaging parameters of high grade gliomas in relation to the MGMT promoter methylation status: the CT, diffusion tensor imaging, and perfusion MR imaging. Neuroradiology 2012;54:555–63 doi:10.1007/s00234-011-0947-y pmid:21833736
    CrossRefPubMed
  46. 46.↵
    1. Eoli M,
    2. Menghi F,
    3. Bruzzone MG, et al
    . Methylation of O6-methylguanine DNA methyltransferase and loss of heterozygosity on 19q and/or 17p are overlapping features of secondary glioblastomas with prolonged survival. Clin Cancer Res 2007;13:2606–13 doi:10.1158/1078-0432.CCR-06-2184 pmid:17473190
    Abstract/FREE Full Text
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 39 (7)
American Journal of Neuroradiology
Vol. 39, Issue 7
1 Jul 2018
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Deep-Learning Convolutional Neural Networks Accurately Classify Genetic Mutations in Gliomas
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
P. Chang, J. Grinband, B.D. Weinberg, M. Bardis, M. Khy, G. Cadena, M.-Y. Su, S. Cha, C.G. Filippi, D. Bota, P. Baldi, L.M. Poisson, R. Jain, D. Chow
Deep-Learning Convolutional Neural Networks Accurately Classify Genetic Mutations in Gliomas
American Journal of Neuroradiology Jul 2018, 39 (7) 1201-1207; DOI: 10.3174/ajnr.A5667

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Deep-Learning Convolutional Neural Networks Accurately Classify Genetic Mutations in Gliomas
P. Chang, J. Grinband, B.D. Weinberg, M. Bardis, M. Khy, G. Cadena, M.-Y. Su, S. Cha, C.G. Filippi, D. Bota, P. Baldi, L.M. Poisson, R. Jain, D. Chow
American Journal of Neuroradiology Jul 2018, 39 (7) 1201-1207; DOI: 10.3174/ajnr.A5667
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • Materials and Methods
    • Results
    • Discussion
    • Conclusions
    • Footnotes
    • References
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • Aperiodic neural dynamics define a novel signature of glioma-induced excitation-inhibition dysregulation
  • Integration of MRI radiomics and germline genetics to predict the IDH mutation status of gliomas
  • Path2Omics: Enhanced transcriptomic and methylation prediction accuracy from tumor histopathology
  • Imaging Genomics of Glioma Revisited: Analytic Methods to Understand Spatial and Temporal Heterogeneity
  • Biologically-informed deep neural networks provide quantitative assessment of intratumoral heterogeneity in post-treatment glioblastoma
  • Prediction of cancer treatment response from histopathology images through imputed transcriptomics
  • Clinical Knowledge and Reasoning Abilities of AI Large Language Models in Anesthesiology: A Comparative Study on the ABA Exam
  • IDH and 1p19q Diagnosis in Diffuse Glioma from Preoperative MRI Using Artificial Intelligence
  • A Novel Fully Automated MRI-Based Deep Learning Method for Classification of IDH Mutation Status in Brain Gliomas
  • Privacy Risks of Whole-Slide Image Sharing in Digital Pathology
  • Diffusion Weighted MRI could precisely predict the pTERT mutation status of GBM using a residual convolutional neural network
  • Prediction of cancer treatment response from histopathology images through imputed transcriptomics
  • Evaluating the Clinical Utility of Artificial Intelligence Assistance and its Explanation on Glioma Grading Task
  • Evolving Role and Translation of Radiomics and Radiogenomics in Adult and Pediatric Neuro-Oncology
  • MRI-Based Deep-Learning Method for Determining Glioma MGMT Promoter Methylation Status
  • Development and Validation of a Deep Learning-Based Model to Distinguish Glioblastoma from Solitary Brain Metastasis Using Conventional MR Images
  • Improved Glioma Grading Using Deep Convolutional Neural Networks
  • A Combined Deep CNN-LSTM Network for the Detection of Novel Coronavirus (COVID-19) Using X-ray Images
  • neoDL: A novel neoantigen intrinsic feature-based deep learning model identifies IDH wild-type glioblastomas with the longest survival
  • Neuro-Oncology and Radiogenomics: Time to Integrate?
  • Machine learning assisted DSC-MRI radiomics as a tool for glioma classification by grade and mutation status
  • Artificial Intelligence in Neuroradiology: Current Status and Future Directions
  • A Novel Fully Automated MRI-Based Deep Learning Method for Classification of 1P/19Q Co-Deletion Status in Brain Gliomas
  • Brain Tumor IDH, 1p/19q, and MGMT Molecular Classification Using MRI-based Deep Learning: Effect of Motion and Motion Correction
  • MRI-BASED DEEP LEARNING METHOD FOR DETERMINING METHYLATION STATUS OF THE O6-METHYLGUANINE-DNA METHYLTRANSFERASE PROMOTER OUTPERFORMS TISSUE BASED METHODS IN BRAIN GLIOMAS
  • Pan-cancer computational histopathology reveals mutations, tumor composition and prognosis
  • Prediction of Tumor Grade and Nodal Status in Oropharyngeal and Oral Cavity Squamous-cell Carcinoma Using a Radiomic Approach
  • Predicting the 1p/19q Codeletion Status of Presumed Low-Grade Glioma with an Externally Validated Machine Learning Algorithm
  • Randomised controlled trial of WISENSE, a real-time quality improving system for monitoring blind spots during esophagogastroduodenoscopy
  • Transcriptomic learning for digital pathology
  • Classification of Brain Tumor IDH Status using MRI and Deep Learning
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • Diagnostic Neuroradiology of Monoclonal Antibodies
  • Clinical Outcomes After Chiari I Decompression
  • Segmentation of Brain Metastases with BLAST
Show more Adult Brain

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire