Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Getting new auth cookie, if you see this message a lot, tell someone!
Review ArticleFunctional
Open Access

Resting-State Functional MRI: Everything That Nonexperts Have Always Wanted to Know

H. Lv, Z. Wang, E. Tong, L.M. Williams, G. Zaharchuk, M. Zeineh, A.N. Goldstein-Piekarski, T.M. Ball, C. Liao and M. Wintermark
American Journal of Neuroradiology August 2018, 39 (8) 1390-1399; DOI: https://doi.org/10.3174/ajnr.A5527
H. Lv
aFrom the Department of Radiology (H.L., Z.W.), Beijing Friendship Hospital, Capital Medical University, Beijing, China
bDepartment of Radiology (H.L., G.Z., M.Z., M.W.), Neuroradiology Division
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for H. Lv
Z. Wang
aFrom the Department of Radiology (H.L., Z.W.), Beijing Friendship Hospital, Capital Medical University, Beijing, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Z. Wang
E. Tong
dDepartment of Radiology (E.T.), Neuroradiology Section, University of California, San Francisco, San Francisco, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for E. Tong
L.M. Williams
cDepartment of Psychiatry and Behavioral Sciences (L.M.W., A.N.G.-P., T.M.B.), Stanford University, Stanford, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for L.M. Williams
G. Zaharchuk
bDepartment of Radiology (H.L., G.Z., M.Z., M.W.), Neuroradiology Division
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for G. Zaharchuk
M. Zeineh
bDepartment of Radiology (H.L., G.Z., M.Z., M.W.), Neuroradiology Division
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for M. Zeineh
A.N. Goldstein-Piekarski
cDepartment of Psychiatry and Behavioral Sciences (L.M.W., A.N.G.-P., T.M.B.), Stanford University, Stanford, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for A.N. Goldstein-Piekarski
T.M. Ball
cDepartment of Psychiatry and Behavioral Sciences (L.M.W., A.N.G.-P., T.M.B.), Stanford University, Stanford, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for T.M. Ball
C. Liao
eDepartment of Radiology (C.L.), Yunnan Tumor Hospital (The Third Affiliated Hospital of Kunming Medical University), Kunming, Yunnan Province, China.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for C. Liao
M. Wintermark
bDepartment of Radiology (H.L., G.Z., M.Z., M.W.), Neuroradiology Division
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for M. Wintermark
  • Article
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Handwerker DA,
    2. Bandettini PA
    . Hemodynamic signals not predicted? Not so: a comment on Sirotin and Das> (2009). Neuroimage 2011;55:1409–12 doi:10.1016/j.neuroimage.2010.04.037 pmid:20406693
    CrossRefPubMedWeb of Science
  2. 2.↵
    1. Sirotin YB,
    2. Das A
    . Anticipatory haemodynamic signals in sensory cortex not predicted by local neuronal activity. Nature 2009;457:475–79 doi:10.1038/nature07664 pmid:19158795
    CrossRefPubMedWeb of Science
  3. 3.↵
    1. Nasrallah FA,
    2. Yeow LY,
    3. Biswal B, et al
    . Dependence of BOLD signal fluctuation on arterial blood CO2 and O2: implication for resting-state functional connectivity. Neuroimage 2015;117:29–39 doi:10.1016/j.neuroimage.2015.05.035 pmid:26003858
    CrossRefPubMed
  4. 4.↵
    1. Ogawa S,
    2. Lee TM,
    3. Kay AR, et al
    . Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A 1990;87:9868–72 doi:10.1073/pnas.87.24.9868 pmid:2124706
    Abstract/FREE Full Text
  5. 5.↵
    1. Kwong KK,
    2. Belliveau JW,
    3. Chesler DA, et al
    . Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci U S A 1992;89:5675–79 doi:10.1073/pnas.89.12.5675 pmid:1608978
    Abstract/FREE Full Text
  6. 6.↵
    1. Hyder F,
    2. Rothman DL
    . Neuronal correlate of BOLD signal fluctuations at rest: err on the side of the baseline. Proc Natl Acad Sci U S A 2010;107:10773–74 doi:10.1073/pnas.1005135107 pmid:20534504
    FREE Full Text
  7. 7.↵
    1. Schölvinck ML,
    2. Maier A,
    3. Ye FQ, et al
    . Neural basis of global resting-state fMRI activity. Proc Natl Acad Sci U S A 2010;107:10238–43 doi:10.1073/pnas.0913110107 pmid:20439733
    Abstract/FREE Full Text
  8. 8.↵
    1. Biswal B,
    2. Yetkin FZ,
    3. Haughton VM, et al
    . Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 1995;34:537–41 doi:10.1002/mrm.1910340409 pmid:8524021
    CrossRefPubMedWeb of Science
  9. 9.↵
    1. Smith K
    . Brain imaging: fMRI 2.0. Nature 2012;484:24–26 doi:10.1038/484024a pmid:22481337
    CrossRefPubMed
  10. 10.↵
    1. Hermes D,
    2. Nguyen M,
    3. Winawer J
    . Neuronal synchrony and the relation between the blood-oxygen-level dependent response and the local field potential. PLoS Biol 2017;15:e2001461 doi:10.1371/journal.pbio.2001461 pmid:28742093
    CrossRefPubMed
  11. 11.↵
    1. Koch C,
    2. Reid RC
    . Neuroscience: observatories of the mind. Nature 2012;483:397–98 doi:10.1038/483397a pmid:22437592
    CrossRefPubMedWeb of Science
  12. 12.↵
    1. Christen T,
    2. Jahanian H,
    3. Ni WW, et al
    . Noncontrast mapping of arterial delay and functional connectivity using resting-state functional MRI: a study in Moyamoya patients. J Magn Reson Imaging 2015;41:424–30 doi:10.1002/jmri.24558 pmid:24419985
    CrossRefPubMed
  13. 13.↵
    1. Gawryluk JR,
    2. Mazerolle EL,
    3. D'Arcy RC
    . Does functional MRI detect activation in white matter? A review of emerging evidence, issues, and future directions. Front Neurosci 2014;8:239 doi:10.3389/fnins.2014.00239 pmid:25152709
    CrossRefPubMed
  14. 14.↵
    1. Beissner F
    . Functional MRI of the brainstem: common problems and their solutions. Clin Neuroradiol 2015;25(Suppl 2):251–57 doi:10.1007/s00062-015-0404-0 pmid:25981409
    CrossRefPubMed
  15. 15.↵
    1. Wintermark M,
    2. Sanelli PC,
    3. Anzai Y, et al
    ; American College of Radiology Head Injury Institute. Imaging evidence and recommendations for traumatic brain injury: advanced neuro- and neurovascular imaging techniques. AJNR Am J Neuroradiol 2015;36:E1–E11 doi:10.3174/ajnr.A4181 pmid:25424870
    Abstract/FREE Full Text
  16. 16.↵
    1. Mayer AR,
    2. Bellgowan PS,
    3. Hanlon FM
    . Functional magnetic resonance imaging of mild traumatic brain injury. Neurosci Biobehav Rev 2014;49:8–18 doi:10.1016/j.neubiorev.2014.11.016 pmid:25434880
    CrossRefPubMed
  17. 17.↵
    1. Stevens MC,
    2. Lovejoy D,
    3. Kim J, et al
    . Multiple resting state network functional connectivity abnormalities in mild traumatic brain injury. Brain Imaging Behav 2012;6:293–318 doi:10.1007/s11682-012-9157-4 pmid:22555821
    CrossRefPubMed
  18. 18.↵
    1. Ishaque M,
    2. Manning JH,
    3. Woolsey MD, et al
    . Functional integrity in children with anoxic brain injury from drowning. Hum Brain Mapp 2017;38:4813–31 doi:10.1002/hbm.23745 pmid:28759710
    CrossRefPubMed
  19. 19.↵
    1. Arngrim N,
    2. Hougaard A,
    3. Schytz HW, et al
    . Effect of hypoxia on BOLD fMRI response and total cerebral blood flow in migraine with aura patients. J Cereb Blood Flow Metab 2017 Jan 1. [Epub ahead of print] doi:10.1177/0271678X17719430 pmid:28686073
    CrossRefPubMed
  20. 20.↵
    1. Lv Y,
    2. Margulies DS,
    3. Cameron CR, et al
    . Identifying the perfusion deficit in acute stroke with resting-state functional magnetic resonance imaging. Ann Neurol 2013;73:136–40 doi:10.1002/ana.23763 pmid:23378326
    CrossRefPubMed
  21. 21.↵
    1. Amemiya S,
    2. Kunimatsu A,
    3. Saito N, et al
    . Cerebral hemodynamic impairment: assessment with resting-state functional MR imaging. Radiology 2014;270:548–55 doi:10.1148/radiol.13130982 pmid:24072777
    CrossRefPubMedWeb of Science
  22. 22.↵
    1. Korgaonkar MS,
    2. Ram K,
    3. Williams LM, et al
    . Establishing the resting state default mode network derived from functional magnetic resonance imaging tasks as an endophenotype: a twins study. Hum Brain Mapp 2014;35:3893–902 doi:10.1002/hbm.22446 pmid:24453120
    CrossRefPubMed
  23. 23.↵
    1. Smith K
    . Brain decoding: reading minds. Nature 2013;502:428–30 doi:10.1038/502428a pmid:24153277
    CrossRefPubMed
  24. 24.↵
    1. Williams LM
    . Defining biotypes for depression and anxiety based on large-scale circuit dysfunction: a theoretical review of the evidence and future directions for clinical translation. Depress Anxiety 2017;34:9–24 doi:10.1002/da.22556 pmid:27653321
    CrossRefPubMed
  25. 25.↵
    1. Khazaee A,
    2. Ebrahimzadeh A,
    3. Babajani-Feremi A
    . Classification of patients with MCI and AD from healthy controls using directed graph measures of resting-state fMRI. Brain Behav Res 2017;322:339–50 doi:10.1016/j.bbr.2016.06.043 pmid:27345822
    CrossRefPubMed
  26. 26.↵
    1. Schirner M,
    2. Rothmeier S,
    3. Jirsa VK, et al
    . An automated pipeline for constructing personalized virtual brains from multimodal neuroimaging data. Neuroimage 2015;117:343–57 doi:10.1016/j.neuroimage.2015.03.055 pmid:25837600
    CrossRefPubMed
  27. 27.↵
    1. Chao-Gan Y,
    2. Yu-Feng Z
    . DPARSF: a MATLAB toolbox for “Pipeline” data analysis of resting-state fMRI. Front Syst Neurosci 2010;4:13 doi:10.3389/fnsys.2010.00013 pmid:20577591
    CrossRefPubMed
  28. 28.↵
    1. Dance A
    . Neuroscience: connectomes make the map. Nature 2015;526:147–49 doi:10.1038/526147a pmid:26432252
    CrossRefPubMed
  29. 29.↵
    1. Liu Y,
    2. Gao JH,
    3. Liotti M, et al
    . Temporal dissociation of parallel processing in the human subcortical outputs. Nature 1999;400:364–67 doi:10.1038/22547 pmid:10432114
    CrossRefPubMed
  30. 30.↵
    1. Tononi G,
    2. Sporns O,
    3. Edelman GM
    . A measure for brain complexity: relating functional segregation and integration in the nervous system. Proc Natl Acad Sci U S A 1994;91:5033–37 doi:10.1073/pnas.91.11.5033 pmid:8197179
    Abstract/FREE Full Text
  31. 31.↵
    1. Han L,
    2. Zhaohui L,
    3. Fei Y, et al
    . Disrupted neural activity in unilateral vascular pulsatile tinnitus patients in the early stage of disease: evidence from resting-state fMRI. Prog Neuropsychopharmacol Biol Psychiatry 2015;59:91–99 doi:10.1016/j.pnpbp.2015.01.013 pmid:25645870
    CrossRefPubMed
  32. 32.↵
    1. Premi E,
    2. Cauda F,
    3. Gasparotti R, et al
    . Multimodal FMRI resting-state functional connectivity in granulin mutations: the case of fronto-parietal dementia. PLoS One 2014;9:e106500 doi:10.1371/journal.pone.0106500 pmid:25188321
    CrossRefPubMed
  33. 33.↵
    1. An L,
    2. Cao QJ,
    3. Sui MQ, et al
    . Local synchronization and amplitude of the fluctuation of spontaneous brain activity in attention-deficit/hyperactivity disorder: a resting-state fMRI study. Neurosci Bull 2013;29:603–13 doi:10.1007/s12264-013-1353-8 pmid:23861089
    CrossRefPubMed
  34. 34.↵
    1. Lei D,
    2. Ma J,
    3. Du X, et al
    . Spontaneous brain activity changes in children with primary monosymptomatic nocturnal enuresis: a resting-state fMRI study. Neurourol Urodyn 2012;31:99–104 doi:10.1002/nau.21205 pmid:22038619
    CrossRefPubMed
  35. 35.↵
    1. Zang YF,
    2. He Y,
    3. Zhu CZ, et al
    . Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain Dev 2007;29:83–91 doi:10.1016/j.braindev.2006.07.002 pmid:16919409
    CrossRefPubMedWeb of Science
  36. 36.↵
    1. Song XW,
    2. Dong ZY,
    3. Long XY, et al
    . REST: a toolkit for resting-state functional magnetic resonance imaging data processing. PLoS One 2011;6:e25031 doi:10.1371/journal.pone.0025031 pmid:21949842
    CrossRefPubMed
  37. 37.↵
    1. Zou QH,
    2. Zhu CZ,
    3. Yang Y, et al
    . An improved approach to detection of Amplitude of Low-Frequency Fluctuation (ALFF) for resting-state fMRI: fractional ALFF. J Neurosci Methods 2008;172:137–41 doi:10.1016/j.jneumeth.2008.04.012 pmid:18501969
    CrossRefPubMedWeb of Science
  38. 38.↵
    1. Buzsáki G,
    2. Draguhn A
    . Neuronal oscillations in cortical networks. Science 2004;304:1926–29 doi:10.1126/science.1099745 pmid:15218136
    Abstract/FREE Full Text
  39. 39.↵
    1. Zuo XN,
    2. Di Martino A,
    3. Kelly C, et al
    . The oscillating brain: complex and reliable. Neuroimage 2010;49:1432–45 doi:10.1016/j.neuroimage.2009.09.037 pmid:19782143
    CrossRefPubMedWeb of Science
  40. 40.↵
    1. Xue SW,
    2. Li D,
    3. Weng XC, et al
    . Different neural manifestations of two slow frequency bands in resting functional magnetic resonance imaging: a systemic survey at regional, interregional, and network levels. Brain Connect 2014;4:242–55 doi:10.1089/brain.2013.0182 pmid:24456196
    CrossRefPubMed
  41. 41.↵
    1. Liu X,
    2. Wang S,
    3. Zhang X, et al
    . Abnormal amplitude of low-frequency fluctuations of intrinsic brain activity in Alzheimer's disease. J Alzheimers Dis 2014;40:387–97 doi:10.3233/JAD-131322 pmid:24473186
    CrossRefPubMedWeb of Science
  42. 42.↵
    1. Xue S,
    2. Wang X,
    3. Wang W, et al
    . Frequency-dependent alterations in regional homogeneity in major depression. Brain Behav Res 2016;306:13–19 doi:10.1016/j.bbr.2016.03.012 pmid:26968135
    CrossRefPubMed
  43. 43.↵
    1. Chen X,
    2. Zhang H,
    3. Zhang L, et al
    . Extraction of dynamic functional connectivity from brain grey matter and white matter for MCI classification. Hum Brain Mapp 2017;38:5019–34 doi:10.1002/hbm.23711 pmid:28665045
    CrossRefPubMed
  44. 44.↵
    1. Zhang L,
    2. Zhang H,
    3. Chen X, et al
    . Learning-based structurally-guided construction of resting-state functional correlation tensors. Magn Reson Imaging 2017;43:110–21 doi:10.1016/j.mri.2017.07.008 pmid:28729016
    CrossRefPubMed
  45. 45.↵
    1. Küblböck M,
    2. Woletz M,
    3. Höflich A, et al
    . Stability of low-frequency fluctuation amplitudes in prolonged resting-state fMRI. Neuroimage 2014;103:249–57 doi:10.1016/j.neuroimage.2014.09.038 pmid:25251869
    CrossRefPubMed
  46. 46.↵
    1. Zuo XN,
    2. Xing XX
    . Test-retest reliabilities of resting-state FMRI measurements in human brain functional connectomics: a systems neuroscience perspective. Neurosci Biobehav Rev 2014;45:100–18 doi:10.1016/j.neubiorev.2014.05.009 pmid:24875392
    CrossRefPubMed
  47. 47.↵
    1. Zang Y,
    2. Jiang T,
    3. Lu Y, et al
    . Regional homogeneity approach to fMRI data analysis. Neuroimage 2004;22:394–400 doi:10.1016/j.neuroimage.2003.12.030 pmid:15110032
    CrossRefPubMedWeb of Science
  48. 48.↵
    1. Zang YF,
    2. Zuo XN,
    3. Milham M, et al
    . Toward a meta-analytic synthesis of the resting-state fMRI literature for clinical populations. Biomed Res Int 2015;2015:435265 doi:10.1155/2015/435265 pmid:26171391
    CrossRefPubMed
  49. 49.↵
    1. Song X,
    2. Zhang Y,
    3. Liu Y
    . Frequency specificity of regional homogeneity in the resting-state human brain. PLoS One 2014;9:e86818 doi:10.1371/journal.pone.0086818 pmid:24466256
    CrossRefPubMed
  50. 50.↵
    1. Liu ZR,
    2. Miao HH,
    3. Yu Y, et al
    . Frequency-specific local synchronization changes in paroxysmal kinesigenic dyskinesia. Medicine (Baltimore) 2016;95:e3293 doi:10.1097/MD.0000000000003293 pmid:27043701
    CrossRefPubMed
  51. 51.↵
    1. Huang Z,
    2. Wang Z,
    3. Zhang J, et al
    . Altered temporal variance and neural synchronization of spontaneous brain activity in anesthesia. Hum Brain Mapp 2014;35:5368–78 doi:10.1002/hbm.22556 pmid:24867379
    CrossRefPubMed
  52. 52.↵
    1. Yu R,
    2. Hsieh MH,
    3. Wang HL, et al
    . Frequency dependent alterations in regional homogeneity of baseline brain activity in schizophrenia. PLoS One 2013;8:e57516 doi:10.1371/journal.pone.0057516 pmid:23483911
    CrossRefPubMed
  53. 53.↵
    1. Zuo XN,
    2. Xu T,
    3. Jiang L, et al
    . Toward reliable characterization of functional homogeneity in the human brain: preprocessing, scan duration, imaging resolution and computational space. Neuroimage 2013;65:374–86 doi:10.1016/j.neuroimage.2012.10.017 pmid:23085497
    CrossRefPubMed
  54. 54.↵
    1. Cui Y,
    2. Jiao Y,
    3. Chen YC, et al
    . Altered spontaneous brain activity in type 2 diabetes: a resting-state functional MRI study. Diabetes 2014;63:749–60 doi:10.2337/db13-0519 pmid:24353185
    Abstract/FREE Full Text
  55. 55.↵
    1. Premi E,
    2. Cauda F,
    3. Gasparotti R, et al
    . Multimodal fMRI resting-state functional connectivity in granulin mutations: the case of fronto-parietal dementia. PLoS One 2014;9:e106500 doi:10.1371/journal.pone.0106500 pmid:25188321
    CrossRefPubMed
  56. 56.↵
    1. Lanting CP,
    2. de Kleine E,
    3. Langers DR, et al
    . Unilateral tinnitus: changes in connectivity and response lateralization measured with fMRI. PLoS One 2014;9:e110704 doi:10.1371/journal.pone.0110704 pmid:25329557
    CrossRefPubMed
  57. 57.↵
    1. Friston KJ
    . Modalities, modes, and models in functional neuroimaging. Science 2009;326:399–403 doi:10.1126/science.1174521 pmid:19833961
    Abstract/FREE Full Text
  58. 58.↵
    1. Tomasi D,
    2. Volkow ND
    . Functional connectivity density mapping. Proc Natl Acad Sci U S A 2010;107:9885–90 doi:10.1073/pnas.1001414107 pmid:20457896
    Abstract/FREE Full Text
  59. 59.↵
    1. Achard S,
    2. Salvador R,
    3. Whitcher B, et al
    . A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J Neurosci 2006;26:63–72 doi:10.1523/JNEUROSCI.3874-05.2006 pmid:16399673
    Abstract/FREE Full Text
  60. 60.↵
    1. He Y,
    2. Chen ZJ,
    3. Evans AC
    . Small-world anatomical networks in the human brain revealed by cortical thickness from MRI. Cereb Cortex 2007;17:2407–19 doi:10.1093/cercor/bhl149 pmid:17204824
    CrossRefPubMedWeb of Science
  61. 61.↵
    1. Xia M,
    2. Wang J,
    3. He Y
    . BrainNet Viewer: a network visualization tool for human brain connectomics. PLoS One 2013;8:e68910 doi:10.1371/journal.pone.0068910 pmid:23861951
    CrossRefPubMed
  62. 62.↵
    1. Lee MH,
    2. Smyser CD,
    3. Shimony JS
    . Resting-state fMRI: a review of methods and clinical applications. AJNR Am J Neuroradiol 2013;34:1866–72 doi:10.3174/ajnr.A3263 pmid:22936095
    Abstract/FREE Full Text
  63. 63.↵
    1. Wilson PH,
    2. Smits-Engelsman B,
    3. Caeyenberghs K, et al
    . Cognitive and neuroimaging findings in developmental coordination disorder: new insights from a systematic review of recent research. Dev Med Child Neurol 2017;59:1117–29 doi:10.1111/dmcn.13530 pmid:28872667
    CrossRefPubMed
  64. 64.↵
    1. Koyama MS,
    2. Parvaz MA,
    3. Goldstein RZ
    . The adolescent brain at risk for substance use disorders: a review of functional MRI research on motor response inhibition. Curr Opin Behav Sci 2017;13:186–95 doi:10.1016/j.cobeha.2016.12.006 pmid:28868337
    CrossRefPubMed
  65. 65.↵
    1. Gravel N,
    2. Harvey BM,
    3. Renken RJ, et al
    . Phase-synchronization-based parcellation of resting state fMRI signals reveals topographically organized clusters in early visual cortex. Neuroimage 2017 Sep 1. [Epub ahead of print] doi:10.1016/j.neuroimage.2017.08.063 pmid:28867341
    CrossRefPubMed
  66. 66.↵
    1. Kiviniemi V,
    2. Kantola JH,
    3. Jauhiainen J, et al
    . Independent component analysis of nondeterministic fMRI signal sources. Neuroimage 2003;19:253–60 doi:10.1016/S1053-8119(03)00097-1 pmid:12814576
    CrossRefPubMedWeb of Science
  67. 67.↵
    1. van de Ven VG,
    2. Formisano E,
    3. Prvulovic D, et al
    . Functional connectivity as revealed by spatial independent component analysis of fMRI measurements during rest. Hum Brain Mapp 2004;22:165–78 doi:10.1002/hbm.20022 pmid:15195284
    CrossRefPubMedWeb of Science
  68. 68.↵
    1. Beckmann CF,
    2. DeLuca M,
    3. Devlin JT, et al
    . Investigations into resting-state connectivity using independent component analysis. Philos Trans R Soc Lond B Biol Sci 2005;360:1001–13 doi:10.1098/rstb.2005.1634 pmid:16087444
    Abstract/FREE Full Text
  69. 69.↵
    1. Shirer WR,
    2. Ryali S,
    3. Rykhlevskaia E, et al
    . Decoding subject-driven cognitive states with whole-brain connectivity patterns. Cereb Cortex 2012;22:158–65 doi:10.1093/cercor/bhr099 pmid:21616982
    CrossRefPubMedWeb of Science
  70. 70.↵
    1. Seeley WW,
    2. Menon V,
    3. Schatzberg AF, et al
    . Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci 2007;27:2349–56 doi:10.1523/JNEUROSCI.5587-06.2007 pmid:17329432
    Abstract/FREE Full Text
  71. 71.↵
    1. Zuo XN,
    2. Kelly C,
    3. Adelstein JS, et al
    . Reliable intrinsic connectivity networks: test-retest evaluation using ICA and dual regression approach. Neuroimage 2010;49:2163–77 doi:10.1016/j.neuroimage.2009.10.080 pmid:19896537
    CrossRefPubMedWeb of Science
  72. 72.↵
    1. Bertolero MA,
    2. Yeo BT,
    3. D'Esposito M
    . The modular and integrative functional architecture of the human brain. Proc Natl Acad Sci U S A 2015;112:E6798–807 doi:10.1073/pnas.1510619112 pmid:26598686
    Abstract/FREE Full Text
  73. 73.↵
    1. Anderson M,
    2. Fu GS,
    3. Phlypo R, et al
    . Independent vector analysis: identification conditions and performance bounds. IEEE Trans Signal Process 2014;62:4399–410 doi:10.1109/TSP.2014.2333554
    CrossRef
  74. 74.↵
    1. Lee JH,
    2. Lee TW,
    3. Jolesz FA, et al
    . Independent vector analysis (IVA): multivariate approach for fMRI group study. Neuroimage 2008;40:86–109 doi:10.1016/j.neuroimage.2007.11.019 pmid:18165105
    CrossRefPubMed
  75. 75.↵
    1. Anderson M,
    2. Adali T,
    3. Li XL
    . Joint blind source separation with multivariate Gaussian model: algorithms and performance analysis. IEEE Trans Signal Process 2012;60:1672–83
  76. 76.↵
    1. Laney J,
    2. Westlake KP,
    3. Ma S, et al
    . Capturing subject variability in fMRI data: a graph-theoretical analysis of GICA vs. IVA. J Neurosci Methods 2015;247:32–40 doi:10.1016/j.jneumeth.2015.03.019 pmid:25797843
    CrossRefPubMed
  77. 77.↵
    1. Ma S,
    2. Phlypo R,
    3. Calhoun VD, et al
    . Capturing group variability using IVA: a simulation study and graph-theoretical analysis. Proc IEEE Int Conf Acoust Speech Signal Process 2013:3128–32 doi:10.1109/ICASSP.2013.6638234
    CrossRef
  78. 78.↵
    1. Allen EA,
    2. Erhardt EB,
    3. Wei Y, et al
    . Capturing inter-subject variability with group independent component analysis of fMRI data: a simulation study. Neuroimage 2012;59:4141–59 doi:10.1016/j.neuroimage.2011.10.010 pmid:22019879
    CrossRefPubMedWeb of Science
  79. 79.↵
    1. Watts DJ,
    2. Strogatz SH
    . Collective dynamics of ‘small-world’ networks. Nature 1998;393:440–42 doi:10.1038/30918 pmid:9623998
    CrossRefPubMedWeb of Science
  80. 80.↵
    1. Liao X,
    2. Vasilakos AV,
    3. He Y
    . Small-world human brain networks: perspectives and challenges. Neurosci Biobehav Rev 2017;77:286–300 doi:10.1016/j.neubiorev.2017.03.018 pmid:28389343
    CrossRefPubMed
  81. 81.↵
    1. Bullmore E,
    2. Sporns O
    . Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 2009;10:186–98 doi:10.1038/nrn2575 pmid:19190637
    CrossRefPubMedWeb of Science
  82. 82.↵
    1. Sporns O,
    2. Honey CJ,
    3. Kotter R
    . Identification and classification of hubs in brain networks. PLoS One 2007;2:e1049 doi:10.1371/journal.pone.0001049 pmid:17940613
    CrossRefPubMed
  83. 83.↵
    1. van den Heuvel MP,
    2. Stam CJ,
    3. Boersma M, et al
    . Small-world and scale-free organization of voxel-based resting-state functional connectivity in the human brain. Neuroimage 2008;43:528–39 doi:10.1016/j.neuroimage.2008.08.010 pmid:18786642
    CrossRefPubMedWeb of Science
  84. 84.↵
    1. Achard S,
    2. Bullmore E
    . Efficiency and cost of economical brain functional networks. PLoS Comput Biol 2007;3:e17 doi:10.1371/journal.pcbi.0030017 pmid:17274684
    CrossRefPubMed
  85. 85.↵
    1. Glasser MF,
    2. Coalson TS,
    3. Robinson EC, et al
    . A multi-modal parcellation of human cerebral cortex. Nature 2016;536:171–78 doi:10.1038/nature18933 pmid:27437579
    CrossRefPubMed
  86. 86.↵
    1. Zalesky A,
    2. Fornito A,
    3. Harding IH, et al
    . Whole-brain anatomical networks: does the choice of nodes matter? Neuroimage 2010;50:970–83 doi:10.1016/j.neuroimage.2009.12.027 pmid:20035887
    CrossRefPubMedWeb of Science
  87. 87.↵
    1. Li W,
    2. Andreasen NC,
    3. Nopoulos P, et al
    . Automated parcellation of the brain surface generated from magnetic resonance images. Front Neuroinform 2013;7:23 doi:10.3389/fninf.2013.00023 pmid:24155718
    CrossRefPubMed
  88. 88.↵
    1. Wang J,
    2. Wang X,
    3. Xia M, et al
    . GRETNA: a graph theoretical network analysis toolbox for imaging connectomics. Front Hum Neurosci 2015;9:386 doi:10.3389/fnhum.2015.00386 pmid:26175682
    CrossRefPubMed
  89. 89.↵
    1. Menon V
    . Large-scale brain networks and psychopathology: a unifying triple network model. Trends Cogn Sci 2011;15:483–506 doi:10.1016/j.tics.2011.08.003 pmid:21908230
    CrossRefPubMedWeb of Science
  90. 90.↵
    1. Calhoun VD,
    2. Miller R,
    3. Pearlson G, et al
    . The chronnectome: time-varying connectivity networks as the next frontier in fMRI data discovery. Neuron 2014;84:262–74 doi:10.1016/j.neuron.2014.10.015 pmid:25374354
    CrossRefPubMedWeb of Science
  91. 91.↵
    1. Griffa A,
    2. Ricaud B,
    3. Benzi K, et al
    . Transient networks of spatio-temporal connectivity map communication pathways in brain functional systems. Neuroimage 2017;155:490–502 doi:10.1016/j.neuroimage.2017.04.015 pmid:28412440
    CrossRefPubMed
  92. 92.↵
    1. Abrol A,
    2. Damaraju E,
    3. Miller RL, et al
    . Replicability of time-varying connectivity patterns in large resting state fMRI samples. Neuroimage 2017;163:160–76 doi:10.1016/j.neuroimage.2017.09.020 pmid:28916181
    CrossRefPubMed
  93. 93.↵
    1. Abrol A,
    2. Chaze C,
    3. Damaraju E, et al
    . The chronnectome: evaluating replicability of dynamic connectivity patterns in 7500 resting fMRI datasets. Conf Proc IEEE Eng Med Biol Soc 2016;2016:5571–74 doi:10.1109/EMBC.2016.7591989 pmid:28269517
    CrossRefPubMed
  94. 94.↵
    1. Thompson WH,
    2. Fransson P
    . The frequency dimension of fMRI dynamic connectivity: network connectivity, functional hubs and integration in the resting brain. Neuroimage 2015;121:227–42 doi:10.1016/j.neuroimage.2015.07.022 pmid:26169321
    CrossRefPubMed
  95. 95.↵
    1. Chen Y,
    2. Wang W,
    3. Zhao X, et al
    . Age-related decline in the variation of dynamic functional connectivity: a resting state analysis. Front Aging Neurosci 2017;9:203 doi:10.3389/fnagi.2017.00203 pmid:28713261
    CrossRefPubMed
  96. 96.↵
    1. Park BY,
    2. Moon T,
    3. Park H
    . Dynamic functional connectivity analysis reveals improved association between brain networks and eating behaviors compared to static analysis. Brain Behav Res 2018;337:114–21 doi:10.1016/j.bbr.2017.10.001 pmid:28986105
    CrossRefPubMed
  97. 97.↵
    1. Cheng JC,
    2. Bosma RL,
    3. Hemington KS, et al
    . Slow-5 dynamic functional connectivity reflects the capacity to sustain cognitive performance during pain. Neuroimage 2017;157:61–68 doi:10.1016/j.neuroimage.2017.06.005 pmid:28583880
    CrossRefPubMed
  98. 98.↵
    1. Damaraju E,
    2. Allen EA,
    3. Belger A, et al
    . Dynamic functional connectivity analysis reveals transient states of dysconnectivity in schizophrenia. Neuroimage Clin 2014;5:298–308 doi:10.1016/j.nicl.2014.07.003 pmid:25161896
    CrossRefPubMed
  99. 99.↵
    1. Hutchison RM,
    2. Womelsdorf T,
    3. Allen EA, et al
    . Dynamic functional connectivity: promise, issues, and interpretations. Neuroimage 2013;80:360–78 doi:10.1016/j.neuroimage.2013.05.079 pmid:23707587
    CrossRefPubMedWeb of Science
  100. 100.↵
    1. Preti MG,
    2. Bolton TA,
    3. Van De Ville D
    . The dynamic functional connectome: state-of-the-art and perspectives. Neuroimage 2017;160:41–54 doi:10.1016/j.neuroimage.2016.12.061 pmid:28034766
    CrossRefPubMed
  101. 101.↵
    1. Lindquist MA,
    2. Xu Y,
    3. Nebel MB, et al
    . Evaluating dynamic bivariate correlations in resting-state fMRI: a comparison study and a new approach. Neuroimage 2014;101:531–46 doi:10.1016/j.neuroimage.2014.06.052 pmid:24993894
    CrossRefPubMed
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 39 (8)
American Journal of Neuroradiology
Vol. 39, Issue 8
1 Aug 2018
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Resting-State Functional MRI: Everything That Nonexperts Have Always Wanted to Know
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
H. Lv, Z. Wang, E. Tong, L.M. Williams, G. Zaharchuk, M. Zeineh, A.N. Goldstein-Piekarski, T.M. Ball, C. Liao, M. Wintermark
Resting-State Functional MRI: Everything That Nonexperts Have Always Wanted to Know
American Journal of Neuroradiology Aug 2018, 39 (8) 1390-1399; DOI: 10.3174/ajnr.A5527

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Resting-State Functional MRI: Everything That Nonexperts Have Always Wanted to Know
H. Lv, Z. Wang, E. Tong, L.M. Williams, G. Zaharchuk, M. Zeineh, A.N. Goldstein-Piekarski, T.M. Ball, C. Liao, M. Wintermark
American Journal of Neuroradiology Aug 2018, 39 (8) 1390-1399; DOI: 10.3174/ajnr.A5527
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • Conclusions
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Cognitive reserve linked to network-specific brain-ventricle coupling modes
  • Multiscale Entropy of Resting-State fMRI Signals Reveals Differences in Brain Complexity in Autism
  • Exploring dynamic alpha band connectivity in Parkinsons disease: A novel approach to postural control assessment using the BioVRSea paradigm
  • Apparent Diffusion Coefficient fMRI shines light on white matter resting-state connectivity compared to BOLD
  • Within-Individual Precision Mapping of Brain Networks Exclusively Using Task Data
  • How does methamphetamine affect the brain? A systematic review of magnetic resonance imaging studies
  • Genetic and environmental contributions to ReHo and fALFF in early adolescence vary across brain regions
  • Evidence for white matter intrinsic connectivity networks at rest and during a task: a large-scale study and templates
  • Addressing Inconsistency in Functional Neuroimaging: A Replicable Data-Driven Multi-Scale Functional Atlas for Canonical Brain Networks
  • Noradrenergic and Dopaminergic Neural Correlates of Trait Anxiety: Unveiling the Impact of Maladaptive Emotion Regulation
  • Functional Activity, Functional Connectivity and Complex Network Biomarkers of Progressive Hyposmia Parkinsons Disease with No Cognitive Impairment: Evidences from Resting-state fMRI Study
  • A Comprehensive and Broad Approach to Resting-State Functional Connectivity in Adult Patients with Mild Traumatic Brain Injury
  • Co-representation of Functional Brain Networks Is Shaped by Cortical Myeloarchitecture and Reveals Individual Behavioral Ability
  • A Cross-Sectional and Longitudinal Integrated Study on Brain Functional Changes in a Neuropathic Pain Rat Model
  • Corticospinal excitability at rest outside of a task does not differ from task intertrial intervals in healthy adults
  • Priming transcranial direct current stimulation for improving hemiparetic upper limb in patients with subacute stroke: study protocol for a randomised controlled trial
  • Right-to-Left Shunt-associated Brain Functional Changes in Migraine: Evidences from a Resting-state FMRI Study
  • Brain connectivity changes underlying depression and fatigue in relapsing-remitting multiple sclerosis: a systematic review
  • Connectivity Regression
  • Genetic influences on the intrinsic and extrinsic functional organizations of the cerebral cortex
  • N-acetyl Cysteine attenuates intrinsic functional connectivity, but not neural alcohol cue reactivity, in treatment-seeking individuals with alcohol use disorder
  • Prosocial Decision-Making and Human Brain: A Graph Theory Analysis on Resting-State Functional Magnetic Resonance Image
  • Seed-based morphometry of nodes in the default mode network among patients with Alzheimers disease in Klang Valley, Malaysia
  • Alteration of functional connectivity in the cortex and major brain networks of non-human primates following focused ultrasound exposure
  • Altered regional homogeneity and its association with cognitive function in adolescents with borderline personality disorder
  • Novel inductively-coupled ear-bars (ICEs) for fMRI signal enhancement in rat entorhinal cortex
  • Assessing The Repeatability of Multi-Frequency Multi-Layer Brain Network Topologies Across Alternative Researchers Choice Paths
  • Effects of a single-dose methylphenidate challenge on resting-state functional connectivity in stimulant-treatment naive children and adults with ADHD
  • A novel rhesus macaque model of Huntingtons disease recapitulates key neuropathological changes along with progressive motor and cognitive decline
  • Chemogenetic activation of Locus Coeruleus Noradrenergic Neurons Modulates the Default Mode Network
  • Resting-state functional reorganisation in Alzheimers disease and amnestic mild cognitive impairment: protocol for a systematic review and meta-analysis
  • Resting-State Functional MRI for Determining Language Lateralization in Children with Drug-Resistant Epilepsy
  • Sex Differences in Brain Structures and Functional Connectivity among Patients with Bipolar I Disorder
  • Time-varying Dynamic Network Model For Dynamic Resting State Functional Connectivity in fMRI and MEG imaging
  • Functional network dynamics in progressive multiple sclerosis
  • Common variants contribute to intrinsic human brain functional networks
  • Structural and functional brain parameters related to cognitive performance across development: Replication and extension of the parieto-frontal integration theory in a single sample
  • Default mode network anatomy and function is linked to pediatric concussion recovery
  • Network-wide abnormalities explain memory variability in hippocampal amnesia
  • Interaction of Developmental Venous Anomalies with Resting-State Functional MRI Measures
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • Kurtosis and Epileptogenic Tubers: A Pilot Study
  • Glutaric Aciduria Type 1: DK vs. Conventional MRI
  • Perifocal Edema in Meningiomas&Brain Connectivity
Show more Functional

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire