Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • AJNR Case Collection
    • Case of the Week Archive
    • Classic Case Archive
    • Case of the Month Archive
  • Special Collections
    • Spinal CSF Leak Articles (Jan 2020-June 2024)
    • 2024 AJNR Journal Awards
    • Most Impactful AJNR Articles
  • Multimedia
    • AJNR Podcast
    • AJNR Scantastics
    • Video Articles
  • For Authors
    • Submit a Manuscript
    • Author Policies
    • Fast publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Manuscript Submission Guidelines
    • Imaging Protocol Submission
    • Submit a Case for the Case Collection
  • About Us
    • About AJNR
    • Editorial Board
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Other Publications
    • ajnr

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • AJNR Case Collection
    • Case of the Week Archive
    • Classic Case Archive
    • Case of the Month Archive
  • Special Collections
    • Spinal CSF Leak Articles (Jan 2020-June 2024)
    • 2024 AJNR Journal Awards
    • Most Impactful AJNR Articles
  • Multimedia
    • AJNR Podcast
    • AJNR Scantastics
    • Video Articles
  • For Authors
    • Submit a Manuscript
    • Author Policies
    • Fast publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Manuscript Submission Guidelines
    • Imaging Protocol Submission
    • Submit a Case for the Case Collection
  • About Us
    • About AJNR
    • Editorial Board
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

Welcome to the new AJNR, Updated Hall of Fame, and more. Read the full announcements.


AJNR is seeking candidates for the position of Associate Section Editor, AJNR Case Collection. Read the full announcement.

 

Review ArticleSpine
Open Access

Review of the Imaging Features of Benign Osteoporotic and Malignant Vertebral Compression Fractures

J.T. Mauch, C.M. Carr, H. Cloft and F.E. Diehn
American Journal of Neuroradiology September 2018, 39 (9) 1584-1592; DOI: https://doi.org/10.3174/ajnr.A5528
J.T. Mauch
aFrom the Department of Radiology, Mayo Clinic, Rochester, Minnesota.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for J.T. Mauch
C.M. Carr
aFrom the Department of Radiology, Mayo Clinic, Rochester, Minnesota.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for C.M. Carr
H. Cloft
aFrom the Department of Radiology, Mayo Clinic, Rochester, Minnesota.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for H. Cloft
F.E. Diehn
aFrom the Department of Radiology, Mayo Clinic, Rochester, Minnesota.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for F.E. Diehn
  • Article
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Melton LJ 3rd.
    . Epidemiology of spinal osteoporosis. Spine (Phila Pa 1976) 1997;22:2S–11S doi:10.1097/00007632-199712151-00002 pmid:9431638
    CrossRefPubMed
  2. 2.↵
    1. Coleman RE
    . Skeletal complications of malignancy. Cancer 1997;80:1588–94 pmid:9362426
    CrossRefPubMedWeb of Science
  3. 3.↵
    1. Porter BA,
    2. Shields AF,
    3. Olson DO
    . Magnetic resonance imaging of bone marrow disorders. Radiol Clin North Am 1986;24:269–89 pmid:3715001
    PubMed
  4. 4.↵
    1. Yamato M,
    2. Nishimura G,
    3. Kuramochi E, et al
    . MR appearance at different ages of osteoporotic compression fractures of the vertebrae. Radiat Med 1998;16:329–34 pmid:9862153
    PubMed
  5. 5.↵
    1. Zhuang H,
    2. Sam JW,
    3. Chacko TK, et al
    . Rapid normalization of osseous FDG uptake following traumatic or surgical fractures. Eur J Nucl Med Mol Imaging 2003;30:1096–103 doi:10.1007/s00259-003-1198-x pmid:12761597
    CrossRefPubMedWeb of Science
  6. 6.↵
    1. Lecouvet FE,
    2. Malghem J,
    3. Michaux L, et al
    . Vertebral compression fractures in multiple myeloma, Part II: assessment of fracture risk with MR imaging of spinal bone marrow. Radiology 1997;204:201–05 doi:10.1148/radiology.204.1.9205247 pmid:9205247
    CrossRefPubMed
  7. 7.↵
    1. Lecouvet FE,
    2. Vande Berg BC,
    3. Maldague BE, et al
    . Vertebral compression fractures in multiple myeloma, Part I: distribution and appearance at MR imaging. Radiology 1997;204:195–99 doi:10.1148/radiology.204.1.9205246 pmid:9205246
    CrossRefPubMedWeb of Science
  8. 8.↵
    1. Layton KF,
    2. Thielen KR,
    3. Cloft HJ, et al
    . Acute vertebral compression fractures in patients with multiple myeloma: evaluation of vertebral body edema patterns on MR imaging and the implications for vertebroplasty. AJNR Am J Neuroradiol 2006;27:1732–34 pmid:16971624
    Abstract/FREE Full Text
  9. 9.↵
    1. Abdel-Wanis ME,
    2. Solyman MT,
    3. Hasan NM
    . Sensitivity, specificity and accuracy of magnetic resonance imaging for differentiating vertebral compression fractures caused by malignancy, osteoporosis, and infections. J Orthop Surg (Hong Kong) 2011;19:145–50 doi:10.1177/230949901101900203 pmid:21857034
    CrossRefPubMed
  10. 10.↵
    1. Yuzawa Y,
    2. Ebara S,
    3. Kamimura M, et al
    . Magnetic resonance and computed tomography-based scoring system for the differential diagnosis of vertebral fractures caused by osteoporosis and malignant tumors. J Orthop Sci 2005;10:345–52 doi:10.1007/s00776-005-0910-z pmid:16075165
    CrossRefPubMed
  11. 11.↵
    1. Moulopoulos LA,
    2. Yoshimitsu K,
    3. Johnston DA, et al
    . MR prediction of benign and malignant vertebral compression fractures. J Magn Reson Imaging 1996;6:667–74 doi:10.1002/jmri.1880060416 pmid:8835961
    CrossRefPubMed
  12. 12.↵
    1. Cuénod CA,
    2. Laredo JD,
    3. Chevret S, et al
    . Acute vertebral collapse due to osteoporosis or malignancy: appearance on unenhanced and gadolinium-enhanced MR images. Radiology 1996;199:541–49 doi:10.1148/radiology.199.2.8668809 pmid:8668809
    CrossRefPubMed
  13. 13.↵
    1. Shih TT,
    2. Huang KM,
    3. Li YW
    . Solitary vertebral collapse: distinction between benign and malignant causes using MR patterns. J Magn Reson Imaging 1999;9:635–42 pmid:10331758
    CrossRefPubMedWeb of Science
  14. 14.↵
    1. Jung HS,
    2. Jee WH,
    3. McCauley TR, et al
    . Discrimination of metastatic from acute osteoporotic compression spinal fractures with MR imaging. Radiographics 2003;23:179–87 doi:10.1148/rg.231025043 pmid:12533652
    CrossRefPubMedWeb of Science
  15. 15.↵
    1. Rupp RE,
    2. Ebraheim NA,
    3. Coombs RJ
    . Magnetic resonance imaging differentiation of compression spine fractures or vertebral lesions caused by osteoporosis or tumor. Spine (Phila Pa 1976) 1995;20:2499–503; discussion 2504 doi:10.1097/00007632-199512000-00007 pmid:8610244
    CrossRefPubMed
  16. 16.↵
    1. Tan DY,
    2. Tsou IY,
    3. Chee TS
    . Differentiation of malignant vertebral collapse from osteoporotic and other benign causes using magnetic resonance imaging. Ann Acad Med Singapore 2002;31:8–14 pmid:11885502
    PubMed
  17. 17.↵
    1. Yuh WT,
    2. Zachar CK,
    3. Barloon TJ, et al
    . Vertebral compression fractures: distinction between benign and malignant causes with MR imaging. Radiology 1989;172:215–18 doi:10.1148/radiology.172.1.2740506 pmid:2740506
    CrossRefPubMedWeb of Science
  18. 18.↵
    1. Thawait SK,
    2. Marcus MA,
    3. Morrison WB, et al
    . Research synthesis: what is the diagnostic performance of magnetic resonance imaging to discriminate benign from malignant vertebral compression fractures? Systematic review and meta-analysis. Spine (Phila Pa 1976) 2012;37:E736–44 doi:10.1097/BRS.0b013e3182458cac pmid:22210011
    CrossRefPubMed
  19. 19.↵
    1. Thawait SK,
    2. Kim J,
    3. Klufas RA, et al
    . Comparison of four prediction models to discriminate benign from malignant vertebral compression fractures according to MRI feature analysis. AJR Am J Roentgenol 2013;200:493–502 doi:10.2214/AJR.11.7192 pmid:23436836
    CrossRefPubMed
  20. 20.↵
    1. Kaplan PA,
    2. Orton DF,
    3. Asleson RJ
    . Osteoporosis with vertebral compression fractures, retropulsed fragments, and neurologic compromise. Radiology 1987;165:533–35 doi:10.1148/radiology.165.2.3659378 pmid:3659378
    CrossRefPubMed
  21. 21.↵
    1. Ishiyama M,
    2. Fuwa S,
    3. Numaguchi Y, et al
    . Pedicle involvement on MR imaging is common in osteoporotic compression fractures. AJNR Am J Neuroradiol 2010;31:668–73 doi:10.3174/ajnr.A1905 pmid:20019106
    Abstract/FREE Full Text
  22. 22.↵
    1. Lehman VT,
    2. Wood CP,
    3. Hunt CH, et al
    . Facet joint signal change on MRI at levels of acute/subacute lumbar compression fractures. AJNR Am J Neuroradiol 2013;34:1468–73 doi:10.3174/ajnr.A3449 pmid:23449650
    Abstract/FREE Full Text
  23. 23.↵
    1. Kim DH,
    2. Rosenblum JK,
    3. Panghaal VS, et al
    . Differentiating neoplastic from nonneoplastic processes in the anterior extradural space. Radiology 2011;260:825–30 doi:10.1148/radiol.11102287 pmid:21555353
    CrossRefPubMed
  24. 24.↵
    1. Baker LL,
    2. Goodman SB,
    3. Perkash I, et al
    . Benign versus pathologic compression fractures of vertebral bodies: assessment with conventional spin-echo, chemical-shift, and STIR MR imaging. Radiology 1990;174:495–502 doi:10.1148/radiology.174.2.2296658 pmid:2296658
    CrossRefPubMedWeb of Science
  25. 25.↵
    1. Dammers R,
    2. Bijvoet HW,
    3. Driesse MJ, et al
    . Occurrence of malignant vertebral fractures in an emergency room setting. Emerg Med J 2007;24:707–09 doi:10.1136/emj.2007.051375 pmid:17901272
    Abstract/FREE Full Text
  26. 26.↵
    1. Baur A,
    2. Stäbler A,
    3. Arbogast S, et al
    . Acute osteoporotic and neoplastic vertebral compression fractures: fluid sign at MR imaging. Radiology 2002;225:730–35 doi:10.1148/radiol.2253011413 pmid:12461253
    CrossRefPubMedWeb of Science
  27. 27.↵
    1. Castillo M,
    2. Arbelaez A,
    3. Smith JK, et al
    . Diffusion-weighted MR imaging offers no advantage over routine noncontrast MR imaging in the detection of vertebral metastases. AJNR Am J Neuroradiol 2000;21:948–53 pmid:10815675
    Abstract/FREE Full Text
  28. 28.↵
    1. An HS,
    2. Andreshak TG,
    3. Nguyen C, et al
    . Can we distinguish between benign versus malignant compression fractures of the spine by magnetic resonance imaging? Spine (Phila Pa 1976) 1995;20:1776–82 doi:10.1097/00007632-199508150-00005 pmid:7502133
    CrossRefPubMed
  29. 29.↵
    1. Ishiyama M,
    2. Numaguchi Y,
    3. Makidono A, et al
    . Contrast-enhanced MRI for detecting intravertebral cleft formation: relation to the time since onset of vertebral fracture. AJR Am J Roentgenol 2013;201:W117–23 doi:10.2214/AJR.12.9621 pmid:23789683
    CrossRefPubMed
  30. 30.↵
    1. Raya JG,
    2. Dietrich O,
    3. Reiser MF, et al
    . Methods and applications of diffusion imaging of vertebral bone marrow. J Magn Reson Imaging 2006;24:1207–20 doi:10.1002/jmri.20748 pmid:17075841
    CrossRefPubMedWeb of Science
  31. 31.↵
    1. Baur A,
    2. Stabler A,
    3. Huber A, et al
    . Diffusion-weighted magnetic resonance imaging of spinal bone marrow. Semin Musculoskelet Radiol 2001;5:35–42 doi:10.1055/s-2001-12921 pmid:11371334
    CrossRefPubMed
  32. 32.↵
    1. Baur A,
    2. Stäbler A,
    3. Brüning R, et al
    . Diffusion-weighted MR imaging of bone marrow: differentiation of benign versus pathologic compression fractures. Radiology 1998;207:349–56 doi:10.1148/radiology.207.2.9577479 pmid:9577479
    CrossRefPubMedWeb of Science
  33. 33.↵
    1. Zhou XJ,
    2. Leeds NE,
    3. McKinnon GC, et al
    . Characterization of benign and metastatic vertebral compression fractures with quantitative diffusion MR imaging. AJNR Am J Neuroradiol 2002;23:165–70 pmid:11827890
    Abstract/FREE Full Text
  34. 34.↵
    1. Tang G,
    2. Liu Y,
    3. Li W, et al
    . Optimization of b value in diffusion-weighted MRI for the differential diagnosis of benign and malignant vertebral fractures. Skeletal Radiol 2007;36:1035–41 doi:10.1007/s00256-007-0358-7 pmid:17786434
    CrossRefPubMed
  35. 35.↵
    1. Baur A,
    2. Huber A,
    3. Ertl-Wagner B, et al
    . Diagnostic value of increased diffusion weighting of a steady-state free precession sequence for differentiating acute benign osteoporotic fractures from pathologic vertebral compression fractures. AJNR Am J Neuroradiol 2001;22:366–72 pmid:11156785
    Abstract/FREE Full Text
  36. 36.↵
    1. Baur-Melnyk A
    . Malignant versus benign vertebral collapse: are new imaging techniques useful? Cancer Imaging 2009;9 Spec No A:S49–51 doi:10.1102/1470-7330.2009.901 pmid:19965294
    CrossRefPubMed
  37. 37.↵
    1. Karchevsky M,
    2. Babb JS,
    3. Schweitzer ME
    . Can diffusion-weighted imaging be used to differentiate benign from pathologic fractures? A meta-analysis. Skeletal Radiol 2008;37:791–95 doi:10.1007/s00256-008-0503-y pmid:18551290
    CrossRefPubMed
  38. 38.↵
    1. Park SW,
    2. Lee JH,
    3. Ehara S, et al
    . Single shot fast spin echo diffusion-weighted MR imaging of the spine; is it useful in differentiating malignant metastatic tumor infiltration from benign fracture edema? Clin Imaging 2004;28:102–08 doi:10.1016/S0899-7071(03)00247-X pmid:15050221
    CrossRefPubMed
  39. 39.↵
    1. Biffar A,
    2. Baur-Melnyk A,
    3. Schmidt GP, et al
    . Quantitative analysis of the diffusion-weighted steady-state free precession signal in vertebral bone marrow lesions. Invest Radiol 2011;46:601–09 doi:10.1097/RLI.0b013e31821e637d pmid:21610504
    CrossRefPubMed
  40. 40.↵
    1. Mubarak F,
    2. Akhtar W
    . Acute vertebral compression fracture: differentiation of malignant and benign causes by diffusion weighted magnetic resonance imaging. J Pak Med Assoc 2011;61:555–58 pmid:22204209
    PubMed
  41. 41.↵
    1. Wonglaksanapimon S,
    2. Chawalparit O,
    3. Khumpunnip S, et al
    . Vertebral body compression fracture: discriminating benign from malignant causes by diffusion-weighted MR imaging and apparent diffusion coefficient value. J Med Assoc Thai 2012;95:81–87 pmid:22379746
    PubMed
  42. 42.↵
    1. Sung JK,
    2. Jee WH,
    3. Jung JY, et al
    . Differentiation of acute osteoporotic and malignant compression fractures of the spine: use of additive qualitative and quantitative axial diffusion-weighted MR imaging to conventional MR imaging at 3.0 T. Radiology 2014;271:488–98 doi:10.1148/radiol.13130399 pmid:24484060
    CrossRefPubMed
  43. 43.↵
    1. Park HJ,
    2. Lee SY,
    3. Rho MH, et al
    . Single-shot echo-planar diffusion-weighted MR imaging at 3T and 1.5T for differentiation of benign vertebral fracture edema and tumor infiltration. Korean J Radiol 2016;17:590–97 doi:10.3348/kjr.2016.17.5.590 pmid:27587948
    CrossRefPubMed
  44. 44.↵
    1. Luo Z,
    2. Litao L,
    3. Gu S, et al
    . Standard-b-value vs low-b-value DWI for differentiation of benign and malignant vertebral fractures: a meta-analysis. Br J Radiol 2016;89:20150384 doi:10.1259/bjr.20150384 pmid:26612466
    CrossRefPubMed
  45. 45.↵
    1. Dietrich O,
    2. Geith T,
    3. Reiser MF, et al
    . Diffusion imaging of the vertebral bone marrow. NMR Biomed 2017;30 doi:10.1002/nbm.3333 pmid:26114411
    CrossRefPubMed
  46. 46.↵
    1. Rumpel H,
    2. Chong Y,
    3. Porter DA, et al
    . Benign versus metastatic vertebral compression fractures: combined diffusion-weighted MRI and MR spectroscopy aids differentiation. Eur Radiol 2013;23:541–50 doi:10.1007/s00330-012-2620-1 pmid:22903620
    CrossRefPubMed
  47. 47.↵
    1. Chen WT,
    2. Shih TT,
    3. Chen RC, et al
    . Blood perfusion of vertebral lesions evaluated with gadolinium-enhanced dynamic MRI: in comparison with compression fracture and metastasis. J Magn Reson Imaging 2002;15:308–14 doi:10.1002/jmri.10063 pmid:11891976
    CrossRefPubMedWeb of Science
  48. 48.↵
    1. Arevalo-Perez J,
    2. Peck KK,
    3. Lyo JK, et al
    . Differentiating benign from malignant vertebral fractures using T1-weighted dynamic contrast-enhanced MRI. J Magn Reson Imaging 2015;42:1039–47 doi:10.1002/jmri.24863 pmid:25656545
    CrossRefPubMed
  49. 49.↵
    1. Geith T,
    2. Biffar A,
    3. Schmidt G, et al
    . Quantitative analysis of acute benign and malignant vertebral body fractures using dynamic contrast-enhanced MRI. AJR Am J Roentgenol 2013;200:W635–43 doi:10.2214/AJR.12.9351 pmid:23701095
    CrossRefPubMed
  50. 50.↵
    1. Tokuda O,
    2. Hayashi N,
    3. Taguchi K, et al
    . Dynamic contrast-enhanced perfusion MR imaging of diseased vertebrae: analysis of three parameters and the distribution of the time-intensity curve patterns. Skeletal Radiol 2005;34:632–38 doi:10.1007/s00256-005-0949-0 pmid:16091963
    CrossRefPubMedWeb of Science
  51. 51.↵
    1. Erly WK,
    2. Oh ES,
    3. Outwater EK
    . The utility of in-phase/opposed-phase imaging in differentiating malignancy from acute benign compression fractures of the spine. AJNR Am J Neuroradiol 2006;27:1183–88 pmid:16775260
    Abstract/FREE Full Text
  52. 52.↵
    1. Zajick DC Jr.,
    2. Morrison WB,
    3. Schweitzer ME, et al
    . Benign and malignant processes: normal values and differentiation with chemical shift MR imaging in vertebral marrow. Radiology 2005;237:590–96 doi:10.1148/radiol.2372040990 pmid:16244268
    CrossRefPubMedWeb of Science
  53. 53.↵
    1. Ogura A,
    2. Hayakawa K,
    3. Maeda F, et al
    . Differential diagnosis of vertebral compression fracture using in-phase/opposed-phase and short TI inversion recovery imaging. Acta Radiol 2012;53:450–55 doi:10.1258/ar.2012.110524 pmid:22416260
    CrossRefPubMed
  54. 54.↵
    1. Laredo JD,
    2. Lakhdari K,
    3. Bellaïche L, et al
    . Acute vertebral collapse: CT findings in benign and malignant nontraumatic cases. Radiology 1995;194:41–48 doi:10.1148/radiology.194.1.7997579 pmid:7997579
    CrossRefPubMedWeb of Science
  55. 55.↵
    1. Kubota T,
    2. Yamada K,
    3. Ito H, et al
    . High-resolution imaging of the spine using multidetector-row computed tomography: differentiation between benign and malignant vertebral compression fractures. J Comput Assist Tomogr 2005;29:712–19 doi:10.1097/01.rct.0000175500.41836.24 pmid:16163049
    CrossRefPubMedWeb of Science
  56. 56.↵
    1. Wang KC,
    2. Jeanmenne A,
    3. Weber GM, et al
    . An online evidence-based decision support system for distinguishing benign from malignant vertebral compression fractures by magnetic resonance imaging feature analysis. J Digit Imaging 2011;24:507–15 doi:10.1007/s10278-010-9316-3 pmid:20680384
    CrossRefPubMed
  57. 57.↵
    1. Bredella MA,
    2. Essary B,
    3. Torriani M, et al
    . Use of FDG-PET in differentiating benign from malignant compression fractures. Skeletal Radiol 2008;37:405–13 doi:10.1007/s00256-008-0452-5 pmid:18278491
    CrossRefPubMed
  58. 58.↵
    1. Shin DS,
    2. Shon OJ,
    3. Byun SJ, et al
    . Differentiation between malignant and benign pathologic fractures with F-18-fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography. Skeletal Radiol 2008;37:415–21 doi:10.1007/s00256-008-0462-3 pmid:18309481
    CrossRefPubMed
  59. 59.↵
    1. Cho WI,
    2. Chang UK
    . Comparison of MR imaging and FDG-PET/CT in the differential diagnosis of benign and malignant vertebral compression fractures. J Neurosurg Spine 2011;14:177–83 doi:10.3171/2010.10.SPINE10175 pmid:21214309
    CrossRefPubMed
  60. 60.↵
    1. Aggarwal A,
    2. Salunke P,
    3. Shekhar BR, et al
    . The role of magnetic resonance imaging and positron emission tomography-computed tomography combined in differentiating benign from malignant lesions contributing to vertebral compression fractures. Surg Neurol Int 2013;4:S323–26 doi:10.4103/2152-7806.112619 pmid:23878766
    CrossRefPubMed
  61. 61.↵
    1. Ravenel JG,
    2. Gordon LL,
    3. Pope TL, et al
    . FDG-PET uptake in occult acute pelvic fracture. Skeletal Radiol 2004;33:99–101 doi:10.1007/s00256-003-0711-4 pmid:14605771
    CrossRefPubMed
  62. 62.↵
    1. Shon IH,
    2. Fogelman I
    . F-18 FDG positron emission tomography and benign fractures. Clin Nucl Med 2003;28:171–75 doi:10.1097/01.RLU.0000053508.98025.01 pmid:12592121
    CrossRefPubMed
  63. 63.↵
    1. Tokuda O,
    2. Harada Y,
    3. Ueda T, et al
    . Malignant versus benign vertebral compression fractures: can we use bone SPECT as a substitute for MR imaging? Nucl Med Commun 2011;32:192–98 doi:10.1097/MNM.0b013e3283425665 pmid:21150808
    CrossRefPubMed
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 39 (9)
American Journal of Neuroradiology
Vol. 39, Issue 9
1 Sep 2018
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Review of the Imaging Features of Benign Osteoporotic and Malignant Vertebral Compression Fractures
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
J.T. Mauch, C.M. Carr, H. Cloft, F.E. Diehn
Review of the Imaging Features of Benign Osteoporotic and Malignant Vertebral Compression Fractures
American Journal of Neuroradiology Sep 2018, 39 (9) 1584-1592; DOI: 10.3174/ajnr.A5528

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Review of the Imaging Features of Benign Osteoporotic and Malignant Vertebral Compression Fractures
J.T. Mauch, C.M. Carr, H. Cloft, F.E. Diehn
American Journal of Neuroradiology Sep 2018, 39 (9) 1584-1592; DOI: 10.3174/ajnr.A5528
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • Conclusions
    • Acknowledgments
    • References
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Comprehensive Review of the Utility of Dynamic Contrast-Enhanced MRI for the Diagnosis and Treatment Assessment of Spinal Benign and Malignant Osseous Disease
  • Assessing Vascularity of Osseous Spinal Metastases with Dual-Energy CT-DSA: A Pilot Study Compared with Catheter Angiography
  • Crossref (108)
  • Google Scholar

This article has been cited by the following articles in journals that are participating in Crossref Cited-by Linking.

  • Bone Marrow Edema at Dual-Energy CT: A Game Changer in the Emergency Department
    Babina Gosangi, Jacob C. Mandell, Michael J. Weaver, Jennifer W. Uyeda, Stacy E. Smith, Aaron D. Sodickson, Bharti Khurana
    RadioGraphics 2020 40 3
  • Treatment of osteoporotic vertebral fractures
    Solène Prost, Sébastien Pesenti, Stéphane Fuentes, Patrick Tropiano, Benjamin Blondel
    Orthopaedics & Traumatology: Surgery & Research 2021 107 1
  • Diagnosis and Management of Vertebral Compression Fracture
    Daniel Alsoof, George Anderson, Christopher L. McDonald, Bryce Basques, Eren Kuris, Alan H. Daniels
    The American Journal of Medicine 2022 135 7
  • The Dixon technique for MRI of the bone marrow
    Niels van Vucht, Rodney Santiago, Bianca Lottmann, Ian Pressney, Dorothee Harder, Adnan Sheikh, Asif Saifuddin
    Skeletal Radiology 2019 48 12
  • Differential diagnosis of benign and malignant vertebral fracture on CT using deep learning
    Yuan Li, Yang Zhang, Enlong Zhang, Yongye Chen, Qizheng Wang, Ke Liu, Hon J. Yu, Huishu Yuan, Ning Lang, Min-Ying Su
    European Radiology 2021 31 12
  • State-of-the-art imaging for diagnosis of metastatic bone disease
    Amanda Isaac, Danoob Dalili, Daniel Dalili, Marc-André Weber
    Der Radiologe 2020 60 S1
  • Combined radiomics-clinical model to predict malignancy of vertebral compression fractures on CT
    Choong Guen Chee, Min A Yoon, Kyung Won Kim, Yusun Ko, Su Jung Ham, Young Chul Cho, Bumwoo Park, Hye Won Chung
    European Radiology 2021 31 9
  • Multiple Myeloma Associated Bone Disease
    Stine Rasch, Thomas Lund, Jon Thor Asmussen, Anne Lerberg Nielsen, Rikke Faebo Larsen, Mikkel Østerheden Andersen, Niels Abildgaard
    Cancers 2020 12 8
  • Diagnostic accuracy of diffusion tensor imaging in differentiating malignant from benign compressed vertebrae
    Ahmed Abdel Khalek Abdel Razek, Fatma Mohamed Sherif
    Neuroradiology 2019 61 11
  • Proton density fat fraction (PDFF) MR imaging for differentiation of acute benign and neoplastic compression fractures of the spine
    Frederic Carsten Schmeel, Julian Alexander Luetkens, Simon Jonas Enkirch, Andreas Feißt, Christoph Hans-Jürgen Endler, Leonard Christopher Schmeel, Peter Johannes Wagenhäuser, Frank Träber, Hans Heinz Schild, Guido Matthias Kukuk
    European Radiology 2018 28 12

More in this TOC Section

  • Bern Score Validity for SIH
  • MP2RAGE 7T in MS Lesions of the Cervical Spine
  • Deep Learning for STIR Spine MRI Quality
Show more Spine

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editors Choice
  • Fellow Journal Club
  • Letters to the Editor

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

Special Collections

  • Special Collections

Resources

  • News and Updates
  • Turn around Times
  • Submit a Manuscript
  • Author Policies
  • Manuscript Submission Guidelines
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Submit a Case
  • Become a Reviewer/Academy of Reviewers
  • Get Peer Review Credit from Publons

Multimedia

  • AJNR Podcast
  • AJNR SCANtastic
  • Video Articles

About Us

  • About AJNR
  • Editorial Board
  • Not an AJNR Subscriber? Join Now
  • Alerts
  • Feedback
  • Advertise with us
  • Librarian Resources
  • Permissions
  • Terms and Conditions

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire