Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Research ArticleAdult Brain

Deep Learning–Based Detection of Intracranial Aneurysms in 3D TOF-MRA

T. Sichtermann, A. Faron, R. Sijben, N. Teichert, J. Freiherr and M. Wiesmann
American Journal of Neuroradiology January 2019, 40 (1) 25-32; DOI: https://doi.org/10.3174/ajnr.A5911
T. Sichtermann
aFrom the Department of Diagnostic and Interventional Neuroradiology (T.S., A.F., R.S., N.T., J.F., M.W.), University Hospital RWTH Aachen, Aachen, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for T. Sichtermann
A. Faron
aFrom the Department of Diagnostic and Interventional Neuroradiology (T.S., A.F., R.S., N.T., J.F., M.W.), University Hospital RWTH Aachen, Aachen, Germany
bDepartment of Radiology (A.F.), University Hospital Bonn, Bonn, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for A. Faron
R. Sijben
aFrom the Department of Diagnostic and Interventional Neuroradiology (T.S., A.F., R.S., N.T., J.F., M.W.), University Hospital RWTH Aachen, Aachen, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for R. Sijben
N. Teichert
aFrom the Department of Diagnostic and Interventional Neuroradiology (T.S., A.F., R.S., N.T., J.F., M.W.), University Hospital RWTH Aachen, Aachen, Germany
bDepartment of Radiology (A.F.), University Hospital Bonn, Bonn, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for N. Teichert
J. Freiherr
aFrom the Department of Diagnostic and Interventional Neuroradiology (T.S., A.F., R.S., N.T., J.F., M.W.), University Hospital RWTH Aachen, Aachen, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for J. Freiherr
M. Wiesmann
aFrom the Department of Diagnostic and Interventional Neuroradiology (T.S., A.F., R.S., N.T., J.F., M.W.), University Hospital RWTH Aachen, Aachen, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for M. Wiesmann
  • Article
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Vlak MH,
    2. Algra A,
    3. Brandenburg R, et al
    . Prevalence of unruptured intracranial aneurysms, with emphasis on sex, age, comorbidity, country, and time period: a systematic review and meta-analysis. Lancet Neurol 2011;10:626–36 doi:10.1016/S1474-4422(11)70109-0 pmid:21641282
    CrossRefPubMedWeb of Science
  2. 2.↵
    1. Kapsalaki EZ,
    2. Rountas CD,
    3. Fountas KN
    . The role of 3 Tesla MRA in the detection of intracranial aneurysms. Int J Vasc Med 2012;2012:792834 doi:10.1155/2012/792834 pmid:22292121
    CrossRefPubMed
  3. 3.↵
    1. Nieuwkamp DJ,
    2. Setz LE,
    3. Algra A, et al
    . Changes in case fatality of aneurysmal subarachnoid haemorrhage over time, according to age, sex, and region: a meta-analysis. Lancet Neurol 2009;8:635–42 doi:10.1016/S1474-4422(09)70126-7 pmid:19501022
    CrossRefPubMedWeb of Science
  4. 4.↵
    1. Lindgren AE,
    2. Koivisto T,
    3. Björkman J, et al
    . Irregular shape of intracranial aneurysm indicates rupture risk irrespective of size in a population-based cohort. Stroke 2016;47:1219–26 doi:10.1161/STROKEAHA.115.012404 pmid:27073241
    Abstract/FREE Full Text
  5. 5.↵
    1. Thompson BG,
    2. Brown RD Jr.,
    3. Amin-Hanjani S, et al
    ; American Heart Association Stroke Council, Council on Cardiovascular and Stroke Nursing, and Council on Epidemiology and Prevention; American Heart Association; American Stroke Association. Guidelines for the management of patients with unruptured intracranial aneurysms: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2015;46:2368–400 doi:10.1161/STR.0000000000000070 pmid:26089327
    Abstract/FREE Full Text
  6. 6.↵
    1. Wiebers DO,
    2. Whisnant JP,
    3. Huston J 3rd., et al
    ; International Study of Unruptured Intracranial Aneurysms Investigators. Unruptured intracranial aneurysms: natural history, clinical outcome, and risks of surgical and endovascular treatment. Lancet 2003;362:103–10 doi:10.1016/S0140-6736(03)13860-3 pmid:12867109
    CrossRefPubMedWeb of Science
  7. 7.↵
    1. Leffers AM,
    2. Wagner A
    . Neurologic complications of cerebral angiography: a retrospective study of complication rate and patient risk factors. Acta Radiol 2000;41:204–10 pmid:10866072
    CrossRefPubMedWeb of Science
  8. 8.↵
    1. Wang S,
    2. Summers RM
    . Machine learning and radiology. Med Image Anal 2012;16:933–51 doi:10.1016/j.media.2012.02.005 pmid:22465077
    CrossRefPubMedWeb of Science
  9. 9.↵
    1. McDonald RJ,
    2. Schwartz KM,
    3. Eckel LJ, et al
    . The effects of changes in utilization and technological advancements of cross-sectional imaging on radiologist workload. Acad Radiol 2015;22:1191–98 doi:10.1016/j.acra.2015.05.007 pmid:26210525
    CrossRefPubMed
  10. 10.↵
    1. Erickson BJ,
    2. Korfiatis P,
    3. Akkus Z, et al
    . Toolkits and libraries for deep learning. J Digit Imaging 2017;30:400–05 doi:10.1007/s10278-017-9965-6 pmid:28315069
    CrossRefPubMed
  11. 11.↵
    1. Larson DB,
    2. Chen MC,
    3. Lungren MP, et al
    . Performance of a deep learning neural network model in assessing skeletal maturity on pediatric hand radiographs. Radiology 2018;287:313–322 doi:10.1148/radiol.2017170236 pmid:29095675
    CrossRefPubMed
  12. 12.↵
    1. Krizhevsky A,
    2. Sutskever I,
    3. Hinton GE
    . ImageNet classification with deep convolutional neural networks. Adv Neural Inf Process Syst 2012:1–9 https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf. Accessed March 20, 2018.
  13. 13.↵
    1. Litjens G,
    2. Kooi T,
    3. Bejnordi BE, et al
    . A survey on deep learning in medical image analysis. Med Image Anal 2017;42:60–88 doi:10.1016/j.media.2017.07.005 pmid:28778026
    CrossRefPubMed
  14. 14.↵
    1. Miki S,
    2. Hayashi N,
    3. Masutani Y, et al
    . Computer-assisted detection of cerebral aneurysms in MR angiography in a routine image-reading environment: effects on diagnosis by radiologists. AJNR Am J Neuroradiol 2016;37:1038–43 doi:10.3174/ajnr.A4671 pmid:26892988
    Abstract/FREE Full Text
  15. 15.↵
    1. Štepán-Buksakowska IL,
    2. Accurso JM,
    3. Diehn FE, et al
    . Computer-aided diagnosis improves detection of small intracranial aneurysms on MRA in a clinical setting. AJNR Am J Neuroradiol 2014;35:1897–902 doi:10.3174/ajnr.A3996 pmid:24924543
    Abstract/FREE Full Text
  16. 16.↵
    1. Yang X,
    2. Blezek DJ,
    3. Cheng LT, et al
    . Computer-aided detection of intracranial aneurysms in MR angiography. J Digit Imaging 2011;24:86–95 doi:10.1007/s10278-009-9254-0 pmid:19937083
    CrossRefPubMed
  17. 17.↵
    1. Nakao T,
    2. Hanaoka S,
    3. Nomura Y, et al
    . Deep neural network-based computer-assisted detection of cerebral aneurysms in MR angiography. J Magn Reson Imaging 2018;47:948–53 doi:10.1002/jmri.25842 pmid:28836310
    CrossRefPubMed
  18. 18.↵
    1. Kamnitsas K,
    2. Ledig C,
    3. Newcombe VF, et al
    . Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med Image Anal 2017;36:61–78 doi:10.1016/j.media.2016.10.004 pmid:27865153
    CrossRefPubMed
  19. 19.↵
    1. Kamnitsas K
    . GitHub-Kamnitsask/deepmedic. Efficient Multi-Scale 3D Convolutional Neural Network for Brain Lesion Segmentation. Published 2017. https://github.com/Kamnitsask/deepmedic. Accessed March 20, 2018.
  20. 20.↵
    1. Jenkinson M,
    2. Pechaud M,
    3. Smith S
    . BET2: MR-based estimation of brain, skull and scalp surfaces. In: Eleventh Annual Meeting of the Organization for Human Brain Mapping, Toronto, Ontario, Canada, June 12–16, 2005
  21. 21.↵
    1. Tustison NJ,
    2. Avants BB,
    3. Cook PA, et al
    . N4ITK: improved N3 bias correction. IEEE Trans Med Imaging 2010;29:1310–20 doi:10.1109/TMI.2010.2046908 pmid:20378467
    CrossRefPubMedWeb of Science
  22. 22.↵
    1. Yushkevich PA,
    2. Piven J,
    3. Hazlett HC, et al
    . User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 2006;31:1116–28 doi:10.1016/j.neuroimage.2006.01.015 pmid:16545965
    CrossRefPubMedWeb of Science
  23. 23.↵
    1. Kamnitsas K,
    2. Chen LC,
    3. Ledig C, et al
    . Ischemic stroke lesion segmentation. In: Proceedings of MICCAI-ISLES, Munich, Germany. October 5, 2015. 2015:13–16. www.isles-challenge.org. Accessed March 19, 2018.
  24. 24.↵
    1. Taha AA,
    2. Hanbury A
    . Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool. BMC Med Imaging 2015;15:29 doi:10.1186/s12880-015-0068-x pmid:26263899
    CrossRefPubMed
  25. 25.↵
    1. Tustison NJ,
    2. Avants BB,
    3. Cook PA, et al
    . N4ITK: improved N3 bias correction. IEEE Trans Med Imaging 2010;29:1310–20 doi:10.1109/TMI.2010.2046908 pmid:20378467
    CrossRefPubMedWeb of Science
  26. 26.↵
    1. Li M,
    2. Zhu Y,
    3. Song H, et al
    . Subarachnoid hemorrhage in patients with good clinical grade: accuracy of 3.0-T MR angiography for detection and characterization. Radiology 2017;284:191–99 doi:10.1148/radiol.2017161469 pmid:28234561
    CrossRefPubMed
  27. 27.↵
    1. MacDonald SL,
    2. Cowan IA,
    3. Floyd R, et al
    . Measuring and managing radiologist workload: application of lean and constraint theories and production planning principles to planning radiology services in a major tertiary hospital. J Med Imaging Radiat Oncol 2013;57:544–50 doi:10.1111/1754-9485.12090 pmid:24119267
    CrossRefPubMed
  28. 28.↵
    1. Berbaum KS,
    2. Franken EA Jr.,
    3. Dorfman DD, et al
    . Satisfaction of search in diagnostic radiology. Invest Radiol 1990;25:133–40 doi:10.1097/00004424-199002000-00006 pmid:2312249
    CrossRefPubMedWeb of Science
  29. 29.↵
    1. Mazzara GP,
    2. Velthuizen RP,
    3. Pearlman JL, et al
    . Brain tumor target volume determination for radiation treatment planning through automated MRI segmentation. Int J Radiat Oncol Biol Phys 2004;59:300–12 doi:10.1016/j.ijrobp.2004.01.026 pmid:15093927
    CrossRefPubMedWeb of Science
  30. 30.↵
    1. Nomura Y,
    2. Masutani Y,
    3. Miki S, et al
    . Performance improvement in computerized detection of cerebral aneurysms by retraining classifier using feedback data collected in routine reading environment. J Biomed Graph Comput 2014;4:12–21 doi:10.5430/jbgc.v4n4p12
    CrossRef
  31. 31.↵
    1. Kalavathi P,
    2. Prasath VB
    . Methods on skull stripping of MRI head scan images: a review. J Digit Imaging 2016;29:365–79 doi:10.1007/s10278-015-9847-8 pmid:26628083
    CrossRefPubMed
  32. 32.↵
    1. Kamnitsas K
    . DeepMedic GitHub documentation. Documentation about pretraining/finetuning. Published 2017. https://github.com/Kamnitsask/deepmedic/blob/master/documentation/dmRes.png. Accessed July 30, 2018.
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 40 (1)
American Journal of Neuroradiology
Vol. 40, Issue 1
1 Jan 2019
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Deep Learning–Based Detection of Intracranial Aneurysms in 3D TOF-MRA
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
T. Sichtermann, A. Faron, R. Sijben, N. Teichert, J. Freiherr, M. Wiesmann
Deep Learning–Based Detection of Intracranial Aneurysms in 3D TOF-MRA
American Journal of Neuroradiology Jan 2019, 40 (1) 25-32; DOI: 10.3174/ajnr.A5911

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Deep Learning–Based Detection of Intracranial Aneurysms in 3D TOF-MRA
T. Sichtermann, A. Faron, R. Sijben, N. Teichert, J. Freiherr, M. Wiesmann
American Journal of Neuroradiology Jan 2019, 40 (1) 25-32; DOI: 10.3174/ajnr.A5911
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • Materials and Methods
    • Results
    • Discussion
    • Conclusions
    • Acknowledgment
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Accuracy of an nnUNet Neural Network for the Automatic Segmentation of Intracranial Aneurysms, Their Parent Vessels, and Major Cerebral Arteries from MRI-TOF
  • Non-invasive imaging modalities for diagnosing pulsatile tinnitus: a comprehensive review and recommended imaging algorithm
  • Diagnosis of intracranial aneurysms by computed tomography angiography using deep learning-based detection and segmentation
  • Automation Bias in AI-Assisted Detection of Cerebral Aneurysms on Time-of-Flight MR-Angiography
  • Deep learning-based cerebral aneurysm segmentation and morphological analysis with three-dimensional rotational angiography
  • Deep learning-based cerebral aneurysm segmentation and morphological analysis with three-dimensional rotational angiography
  • Automated Detection of Cerebral Aneurysms on TOF-MRA Using a Deep Learning Approach: An External Validation Study
  • Deep Learning-Based Software Improves Clinicians' Detection Sensitivity of Aneurysms on Brain TOF-MRA
  • Fully automated intracranial aneurysm detection and segmentation from digital subtraction angiography series using an end-to-end spatiotemporal deep neural network
  • Artificial Intelligence in Neuroradiology: Current Status and Future Directions
  • Detection of clustered anomalies in single-voxel morphometry as a rapid automated method for identifying intracranial aneurysms
  • Artificial Intelligence in the Management of Intracranial Aneurysms: Current Status and Future Perspectives
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

Adult Brain

  • Diagnostic Neuroradiology of Monoclonal Antibodies
  • NCCT vs. MRI for Brain Atrophy in Acute Stroke
  • Clinical Outcomes After Chiari I Decompression
Show more Adult Brain

Functional

  • Kurtosis and Epileptogenic Tubers: A Pilot Study
  • Glutaric Aciduria Type 1: DK vs. Conventional MRI
  • Multiparametric MRI in PEDS Pontine Glioma
Show more Functional

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire