Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Research ArticleAdult Brain
Open Access

Bayesian Estimation of CBF Measured by DSC-MRI in Patients with Moyamoya Disease: Comparison with 15O-Gas PET and Singular Value Decomposition

S. Hara, Y. Tanaka, S. Hayashi, M. Inaji, T. Maehara, M. Hori, S. Aoki, K. Ishii and T. Nariai
American Journal of Neuroradiology November 2019, 40 (11) 1894-1900; DOI: https://doi.org/10.3174/ajnr.A6248
S. Hara
aFrom the Department of Neurosurgery (S. Hara, Y.T., S. Hayashi, M.I., T.M., T.N.), Tokyo Medical and Dental University, Tokyo, Japan
bDepartment of Radiology (S. Hara. M.H., S.A.), Juntendo University, Tokyo, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for S. Hara
Y. Tanaka
aFrom the Department of Neurosurgery (S. Hara, Y.T., S. Hayashi, M.I., T.M., T.N.), Tokyo Medical and Dental University, Tokyo, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Y. Tanaka
S. Hayashi
aFrom the Department of Neurosurgery (S. Hara, Y.T., S. Hayashi, M.I., T.M., T.N.), Tokyo Medical and Dental University, Tokyo, Japan
cResearch Team for Neuroimaging (S. Hayashi, M.I., K.I., T.N.), Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for S. Hayashi
M. Inaji
aFrom the Department of Neurosurgery (S. Hara, Y.T., S. Hayashi, M.I., T.M., T.N.), Tokyo Medical and Dental University, Tokyo, Japan
cResearch Team for Neuroimaging (S. Hayashi, M.I., K.I., T.N.), Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for M. Inaji
T. Maehara
aFrom the Department of Neurosurgery (S. Hara, Y.T., S. Hayashi, M.I., T.M., T.N.), Tokyo Medical and Dental University, Tokyo, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for T. Maehara
M. Hori
bDepartment of Radiology (S. Hara. M.H., S.A.), Juntendo University, Tokyo, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for M. Hori
S. Aoki
bDepartment of Radiology (S. Hara. M.H., S.A.), Juntendo University, Tokyo, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for S. Aoki
K. Ishii
cResearch Team for Neuroimaging (S. Hayashi, M.I., K.I., T.N.), Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for K. Ishii
T. Nariai
aFrom the Department of Neurosurgery (S. Hara, Y.T., S. Hayashi, M.I., T.M., T.N.), Tokyo Medical and Dental University, Tokyo, Japan
cResearch Team for Neuroimaging (S. Hayashi, M.I., K.I., T.N.), Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for T. Nariai
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Ostergaard L,
    2. Weisskoff RM,
    3. Chesler DA, et al
    . High-resolution measurement of cerebral blood flow using intravascular tracer bolus passages, part I: mathematical approach and statistical analysis. Magn Reson Med 1996;36:715–75 doi:10.1002/mrm.1910360510 pmid:8916022
    CrossRefPubMedWeb of Science
  2. 2.↵
    1. Ostergaard LW,
    2. Chesler DA,
    3. Gyldensted C, et al
    . High resolution measurement of cerebral blood flow using intravascular tracer bolus passages, part II: experimental comparison and preliminary results. Magn Reson Med 1996;36:726–36 doi:10.1002/mrm.1910360511 pmid:8916023
    CrossRefPubMedWeb of Science
  3. 3.↵
    1. Wintermark M,
    2. Sesay M,
    3. Barbier E, et al
    . Comparative overview of brain perfusion imaging techniques. Stroke 2005;36:e83–99 doi:10.1161/01.STR.0000177884.72657.8b pmid:16100027
    Abstract/FREE Full Text
  4. 4.↵
    1. Lansberg MG,
    2. Lee J,
    3. Christensen S, et al
    . RAPID automated patient selection for reperfusion therapy: a pooled analysis of the Echoplanar Imaging Thrombolytic Evaluation Trial (EPITHET) and the Diffusion and Perfusion Imaging Evaluation for Understanding Stroke Evolution (DEFUSE) Study. Stroke 2011;42:1608–14 doi:10.1161/STROKEAHA.110.609008 pmid:21493916
    Abstract/FREE Full Text
  5. 5.↵
    1. Tanaka Y,
    2. Nariai T,
    3. Nagaoka T, et al
    . Quantitative evaluation of cerebral hemodynamics in patients with Moyamoya disease by dynamic susceptibility contrast magnetic resonance imaging: comparison with positron emission tomography. J Cereb Blood Flow Metab 2006;26:291–300 doi:10.1038/sj.jcbfm.9600187 pmid:16049427
    CrossRefPubMed
  6. 6.↵
    1. Ibaraki M,
    2. Shimosegawa E,
    3. Toyoshima H, et al
    . Effect of regional tracer delay on CBF in healthy subjects measured with dynamic susceptibility contrast-enhanced MRI: comparison with 15O-PET. Magn Reson Med Sci 2005;4:27–34 doi:10.2463/mrms.4.27 pmid:16127251
    CrossRefPubMed
  7. 7.↵
    1. Lin W,
    2. Celik A,
    3. Derdeyn C, et al
    . Quantitative measurements of cerebral blood flow in patients with unilateral carotid artery occlusion: a PET and MR study. J Magn Reson Imaging 2001;14:659–67 doi:10.1002/jmri.10021 pmid:11747021
    CrossRefPubMed
  8. 8.↵
    1. Mukherjee P,
    2. Kang HC,
    3. Videen TO, et al
    . Measurement of cerebral blood flow in chronic carotid occlusive disease: comparison of dynamic susceptibility contrast perfusion MR imaging with positron emission tomography. AJNR Am J Neuroradiol 2003;24:862–71 pmid:12748086
    Abstract/FREE Full Text
  9. 9.↵
    1. Ostergaard L,
    2. Johannsen P,
    3. Host-Poulsen P, et al
    . Cerebral blood flow measurements by magnetic resonance imaging bolus tracking: comparison with [(15)O]H2O positron emission tomography in humans. J Cereb Blood Flow Metab 1998;18:935–40 doi:10.1097/00004647-199809000-00002 pmid:9740096
    CrossRefPubMedWeb of Science
  10. 10.↵
    1. Vakil P,
    2. Lee JJ,
    3. Mouannes-Srour JJ, et al
    . Cerebrovascular occlusive disease: quantitative cerebral blood flow using dynamic susceptibility contrast MR imaging correlates with quantitative H2[15O] PET. Radiology 2013;266:879–86 doi:10.1148/radiol.12120756 pmid:23297337
    CrossRefPubMed
  11. 11.↵
    1. Boutelier T,
    2. Kudo K,
    3. Pautot F, et al
    . Bayesian hemodynamic parameter estimation by bolus tracking perfusion weighted imaging. IEEE Trans Med Imaging 2012;31:1381–95 doi:10.1109/TMI.2012.2189890 pmid:22410325
    CrossRefPubMed
  12. 12.↵
    1. Kudo K,
    2. Christensen S,
    3. Sasaki M, et al
    . Accuracy and reliability assessment of CT and MR perfusion analysis software using a digital phantom. Radiology 2013;267:201–11 doi:10.1148/radiol.12112618 pmid:23220899
    CrossRefPubMed
  13. 13.↵
    1. Kudo K,
    2. Boutelier T,
    3. Pautot F, et al
    . Bayesian analysis of perfusion-weighted imaging to predict infarct volume: comparison with singular value decomposition. Magn Reson Med Sci 2014;13:45–50 doi:10.2463/mrms.2013-0085 pmid:24492744
    CrossRefPubMed
  14. 14.↵
    1. Nicoli F,
    2. Scalzo F,
    3. Saver JL, et al
    . The combination of baseline magnetic resonance perfusion-weighted imaging-derived tissue volume with severely prolonged arterial-tissue delay and diffusion-weighted imaging lesion volume is predictive of MCA-M1 recanalization in patients treated with endovascular thrombectomy. Neuroradiology 2014;56:117–27 doi:10.1007/s00234-013-1310-2 pmid:24337610
    CrossRefPubMed
  15. 15.↵
    1. Nael K,
    2. Mossadeghi B,
    3. Boutelier T, et al
    . Bayesian estimation of cerebral perfusion using reduced-contrast-dose dynamic susceptibility contrast perfusion at 3T. AJNR Am J Neuroradiol 2015;36:710–18 doi:10.3174/ajnr.A4184 pmid:25430859
    Abstract/FREE Full Text
  16. 16.↵
    1. Hansen MB,
    2. Tietze A,
    3. Kalpathy-Cramer J, et al
    . Reliable estimation of microvascular flow patterns in patients with disrupted blood-brain barrier using dynamic susceptibility contrast MRI. J Magn Reson Imaging 2017;46:537–49 doi:10.1002/jmri.25549 pmid:27902858
    CrossRefPubMed
  17. 17.↵
    Research Committee on the Pathology and Treatment of Spontaneous Occlusion of the Circle of Willis; Health Labour Sciences Research Grant for Research on Measures for Infractable Diseases. Guidelines for diagnosis and treatment of Moyamoya disease (spontaneous occlusion of the circle of Willis). Neurol Med Chir (Tokyo) 2012;52:245–66 doi:10.2176/nmc.52.245 pmid:22870528
    CrossRefPubMed
  18. 18.↵
    1. Wu O,
    2. Ostergaard L,
    3. Weisskoff RM, et al
    . Tracer arrival timing-insensitive technique for estimating flow in MR perfusion-weighted imaging using singular value decomposition with a block-circulant deconvolution matrix. Magn Reson Med 2003;50:164–74 doi:10.1002/mrm.10522 pmid:12815691
    CrossRefPubMedWeb of Science
  19. 19.↵
    1. Sasaki M,
    2. Kudo K,
    3. Boutelier T, et al
    . Assessment of the accuracy of a Bayesian estimation algorithm for perfusion CT by using a digital phantom. Neuroradiology 2013;55:1197–1203 doi:10.1007/s00234-013-1237-7 pmid:23852431
    CrossRefPubMed
  20. 20.↵
    1. Mouridsen K,
    2. Christensen S,
    3. Gyldensted L, et al
    . Automatic selection of arterial input function using cluster analysis. Magn Reson Med 2006;55:524–31 doi:10.1002/mrm.20759 pmid:16453314
    CrossRefPubMed
  21. 21.↵
    1. Bettinardi V,
    2. Presotto L,
    3. Rapisarda E, et al
    . Physical performance of the new hybrid PETCT Discovery-690. Med Phys 2011;38:5394–5411 doi:10.1118/1.3635220 pmid:21992359
    CrossRefPubMed
  22. 22.↵
    1. Shidahara M,
    2. Watabe H,
    3. Kim KM, et al
    . Optimal scan time of oxygen-15-labeled gas inhalation autoradiographic method for measurement of cerebral oxygen extraction fraction and cerebral oxygen metabolic rate. Ann Nucl Med 2008;22:667–75 doi:10.1007/s12149-008-0157-9 pmid:18982469
    CrossRefPubMed
  23. 23.↵
    1. Kudomi N,
    2. Choi E,
    3. Yamamoto S, et al
    . Development of a GSO detector assembly for a continuous blood sampling system. IEEE Trans Nucl Sci 2003;50:70–73 doi:10.1109/TNS.2002.807869
    CrossRef
  24. 24.
    1. Miwa K,
    2. Umeda T,
    3. Murata T, et al
    . Evaluation of scatter limitation correction: a new method of correcting photopenic artifacts caused by patient motion during whole-body PET/CT imaging. Nucl Med Commun 2016;37:147–54 doi:10.1097/MNM.0000000000000403 pmid:26440565
    CrossRefPubMed
  25. 25.↵
    1. Shidahara M,
    2. Watabe H,
    3. Kim KM, et al
    . Evaluation of a commercial PET tomograph-based system for the quantitative assessment of rCBF, rOEF and rCMRO2 by using sequential administration of 15O-labeled compounds. Ann Nucl Med 2002;16:317–27 doi:10.1007/BF02988616 pmid:12230091
    CrossRefPubMed
  26. 26.↵
    1. Hara S,
    2. Tanaka Y,
    3. Ueda Y, et al
    . Noninvasive evaluation of CBF and perfusion delay of Moyamoya disease using arterial spin-labeling MRI with multiple postlabeling delays: comparison with 15O-gas PET and DSC-MRI. AJNR Am J Neuroradiol 2017;38:696–702 doi:10.3174/ajnr.A5068 pmid:28209582
    Abstract/FREE Full Text
  27. 27.↵
    1. Kimura H,
    2. Kado H,
    3. Koshimoto Y, et al
    . Multislice continuous arterial spin-labeled perfusion MRI in patients with chronic occlusive cerebrovascular disease: a correlative study with CO2 PET validation. J Magn Reson Imaging 2005;22:189–98 doi:10.1002/jmri.20382 pmid:16028241
    CrossRefPubMedWeb of Science
  28. 28.↵
    1. Grandin CB,
    2. Bol A,
    3. Smith AM, et al
    . Absolute CBF and CBV measurements by MRI bolus tracking before and after acetazolamide challenge: repeatabilily and comparison with PET in humans. Neuroimage 2005;26:525–35 doi:10.1016/j.neuroimage.2005.02.028 pmid:15907309
    CrossRefPubMedWeb of Science
  29. 29.↵
    1. Takasawa M,
    2. Jones PS,
    3. Guadagno JV, et al
    . How reliable is perfusion MR in acute stroke? Validation and determination of the penumbra threshold against quantitative PET. Stroke 2008;39:870–77 doi:10.1161/STROKEAHA.107.500090 pmid:18258831
    Abstract/FREE Full Text
  30. 30.↵
    1. Sakoh M,
    2. Rohl L,
    3. Gyldensted C, et al
    . Cerebral blood flow and blood volume measured by magnetic resonance imaging bolus tracking after acute stroke in pigs: comparison with [(15)O]H(2)O positron emission tomography. Stroke 2000;31:1958–64 doi:10.1161/01.STR.31.8.1958 pmid:10926964
    Abstract/FREE Full Text
  31. 31.↵
    1. Nariai T,
    2. Matsushima Y,
    3. Imae S, et al
    . Severe haemodynamic stress in selected subtypes of patients with Moyamoya disease: a positron emission tomography study. J Neurol Neurosurg Psychiatry 2005;76:663–69 doi:10.1136/jnnp.2003.025049 pmid:15834024
    Abstract/FREE Full Text
  32. 32.↵
    1. Hirai S,
    2. Inaji M,
    3. Tanaka Y, et al
    . Correlation between clinical presentations and hemodynamic parameters measured by dynamic susceptibility contrast magnetic resonance imaging in adult patients with Moyamoya disease. J Stroke Cerebrovasc Dis 2017;26:2814–20 doi:10.1016/j.jstrokecerebrovasdis.2017.06.057 pmid:28778721
    CrossRefPubMed
  33. 33.↵
    1. Ishii Y,
    2. Nariai T,
    3. Tanaka Y, et al
    . Practical clinical use of dynamic susceptibility contrast magnetic resonance imaging for the surgical treatment of Moyamoya disease. Neurosurgery 2014;74:302–09 doi:10.1227/NEU.0000000000000266 pmid:24335813
    CrossRefPubMed
  34. 34.↵
    1. Ishii Y,
    2. Tanaka Y,
    3. Momose T, et al
    . Chronologic evaluation of cerebral hemodynamics by dynamic susceptibility contrast magnetic resonance imaging after indirect bypass surgery for Moyamoya disease. World Neurosurg 2017;108:427–35 doi:10.1016/j.wneu.2017.09.001 pmid:28893695
    CrossRefPubMed
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 40 (11)
American Journal of Neuroradiology
Vol. 40, Issue 11
1 Nov 2019
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Bayesian Estimation of CBF Measured by DSC-MRI in Patients with Moyamoya Disease: Comparison with 15O-Gas PET and Singular Value Decomposition
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
S. Hara, Y. Tanaka, S. Hayashi, M. Inaji, T. Maehara, M. Hori, S. Aoki, K. Ishii, T. Nariai
Bayesian Estimation of CBF Measured by DSC-MRI in Patients with Moyamoya Disease: Comparison with 15O-Gas PET and Singular Value Decomposition
American Journal of Neuroradiology Nov 2019, 40 (11) 1894-1900; DOI: 10.3174/ajnr.A6248

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Bayesian Estimation of CBF Measured by DSC-MRI in Patients with Moyamoya Disease: Comparison with 15O-Gas PET and Singular Value Decomposition
S. Hara, Y. Tanaka, S. Hayashi, M. Inaji, T. Maehara, M. Hori, S. Aoki, K. Ishii, T. Nariai
American Journal of Neuroradiology Nov 2019, 40 (11) 1894-1900; DOI: 10.3174/ajnr.A6248
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • Diagnostic Neuroradiology of Monoclonal Antibodies
  • Clinical Outcomes After Chiari I Decompression
  • Segmentation of Brain Metastases with BLAST
Show more Adult Brain

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire