Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Review ArticleReview Article
Open Access

A Review of Magnetic Particle Imaging and Perspectives on Neuroimaging

L.C. Wu, Y. Zhang, G. Steinberg, H. Qu, S. Huang, M. Cheng, T. Bliss, F. Du, J. Rao, G. Song, L. Pisani, T. Doyle, S. Conolly, K. Krishnan, G. Grant and M. Wintermark
American Journal of Neuroradiology February 2019, 40 (2) 206-212; DOI: https://doi.org/10.3174/ajnr.A5896
L.C. Wu
aFrom the Departments of Bioengineering (L.C.W.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for L.C. Wu
Y. Zhang
cRadiology (Y.Z., H.Q., S.H., M.W.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Y. Zhang
G. Steinberg
bNeurosurgery (G.S., M.C., T.B., F.D., G.G.)
dNeuroradiology Section, Radiology (J.R., G.S., L.P.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for G. Steinberg
H. Qu
cRadiology (Y.Z., H.Q., S.H., M.W.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for H. Qu
S. Huang
cRadiology (Y.Z., H.Q., S.H., M.W.)
hChongqing Medical University (S.H.), Traditional Chinese Medicine College, Chongqing, China.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for S. Huang
M. Cheng
bNeurosurgery (G.S., M.C., T.B., F.D., G.G.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for M. Cheng
T. Bliss
bNeurosurgery (G.S., M.C., T.B., F.D., G.G.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for T. Bliss
F. Du
bNeurosurgery (G.S., M.C., T.B., F.D., G.G.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for F. Du
J. Rao
dNeuroradiology Section, Radiology (J.R., G.S., L.P.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for J. Rao
G. Song
aFrom the Departments of Bioengineering (L.C.W.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for G. Song
L. Pisani
dNeuroradiology Section, Radiology (J.R., G.S., L.P.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for L. Pisani
T. Doyle
ePediatrics (T.D.), Stanford University, Stanford, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for T. Doyle
S. Conolly
fDepartment of Electrical Engineering and Computer Sciences (S.C.), University of California Berkeley, Berkeley, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for S. Conolly
K. Krishnan
gDepartments of Materials Sciences and Engineering and Physics (K.K.), University of Washington, Seattle, Washington
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for K. Krishnan
G. Grant
bNeurosurgery (G.S., M.C., T.B., F.D., G.G.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for G. Grant
M. Wintermark
cRadiology (Y.Z., H.Q., S.H., M.W.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for M. Wintermark
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Gleich B,
    2. Weizenecker J
    . Tomographic imaging using the nonlinear response of magnetic particles. Nature 2005;435:1214–17 doi:10.1038/nature03808 pmid:15988521
    CrossRefPubMedWeb of Science
  2. 2.↵
    1. Rahmer J,
    2. Gleich B,
    3. Weizenecker J, et al
    . 3D real-time magnetic particle imaging of cerebral blood flow in living mice. In: Proceedings of the International Society for Magnetic Resonance in Medicine, 18, 2010
  3. 3.↵
    1. Ludewig P,
    2. Gdaniec N,
    3. Sedlacik J, et al
    . Magnetic particle imaging for real-time perfusion imaging in acute stroke. ACS Nano 2017;11:10480–88 doi:10.1021/acsnano.7b05784 pmid:28976180
    CrossRefPubMed
  4. 4.↵
    1. Orendorff R,
    2. Keselman K,
    3. Conolly S
    . Quantitative cerebral blood flow and volume measurements by magnetic particle imaging. In: 13th European Molecular Imaging Meeting, March 20–23, 2018. San Sebastián, Spain
  5. 5.↵
    1. Tomitaka A,
    2. Arami H,
    3. Gandhi S, et al
    . Lactoferrin conjugated iron oxide nanoparticles for targeting brain glioma cells in magnetic particle imaging. Nanoscale 2015;7:16890–98 doi:10.1039/C5NR02831K pmid:26412614
    CrossRefPubMed
  6. 6.↵
    1. Fu A,
    2. Wilson RJ,
    3. Smith BR, et al
    . Fluorescent magnetic nanoparticles for magnetically enhanced cancer imaging and targeting in living subjects. ACS Nano 2012;6;6862–69 doi:10.1021/nn301670a pmid:22857784
    CrossRefPubMed
  7. 7.↵
    1. Finas D,
    2. Baumann K,
    3. Sydow L, et al
    . Lymphatic tissue and superparamagnetic nanoparticles: magnetic particle imaging for detection and distribution in a breast cancer model. Biomed Tech 2013 Sep 7. [Epub ahead of print] doi:10.1515/bmt-2012-4158 pmid:24042920
    CrossRefPubMed
  8. 8.↵
    1. Zheng B,
    2. von See MP,
    3. Yu E, et al
    . Quantitative magnetic particle imaging monitors the transplantation, biodistribution, and clearance of stem cells in vivo. Theranostic 2016;6:291–301 doi:10.7150/thno.13728 pmid:26909106
    CrossRefPubMed
  9. 9.↵
    1. Song G,
    2. Chen M,
    3. Zhang Y, et al
    . Janus iron oxides @ semiconducting polymer nanoparticle tracer for cell tracking by magnetic particle imaging. Nano Lett 2018;18:182–89 doi:10.1021/acs.nanolett.7b03829 pmid:29232142
    CrossRefPubMed
  10. 10.↵
    1. Goodwill PW,
    2. Lu K,
    3. Zheng B, et al
    . An x-space magnetic particle imaging scanner. Rev Sci Instrum 2012;83 doi:10.1063/1.3694534 pmid:22462930
    CrossRefPubMed
  11. 11.↵
    1. Rahmer J,
    2. Weizenecker J,
    3. Gleich B, et al
    . Signal encoding in magnetic particle imaging: properties of the system function. BMC Med Imaging 2009;9:4 doi:10.1186/1471-2342-9-4 pmid:19335923
    CrossRefPubMed
  12. 12.↵
    1. Goodwill PW,
    2. Conolly SM
    . The X-space formulation of the magnetic particle imaging process: 1-D signal, resolution, bandwidth, SNR, SAR, and magnetostimulation. IEEE Trans Med Imaging 2010;29:1851–59 doi:10.1109/TMI.2010.2052284 pmid:20529726
    CrossRefPubMed
  13. 13.↵
    1. Goodwill PW,
    2. Conolly SM
    . Multidimensional X-space magnetic particle imaging. IEEE Trans Med 2011;30:1581–90 doi:10.1109/TMI.2011.2125982
    CrossRef
  14. 14.↵
    1. Arami H,
    2. Teeman E,
    3. Troksa A, et al
    . Tomographic magnetic particle imaging of cancer targeted nanoparticles. Nanoscale 2017;9:18723–30 doi:10.1039/c7nr05502a pmid:29165498
    CrossRefPubMed
  15. 15.↵
    1. Knopp T,
    2. Biederer S,
    3. Sattel TF, et al
    . Prediction of the spatial resolution of magnetic particle imaging using the modulation transfer function of the imaging process. IEEE Trans Med Imaging 2011;30:1284–92 doi:10.1109/TMI.2011.2113188 pmid:21317081
    CrossRefPubMed
  16. 16.↵
    1. Moses WW
    . Fundamental limits of spatial resolution in PET. Nucl Instrum Methods Phys Res A 2011;648(Supplement 1):S236–40 doi:10.1016/j.nima.2010.11.092 pmid:21804677
    CrossRefPubMed
  17. 17.↵
    1. Bailey DL,
    2. Willowson KP
    . An evidence-based review of quantitative SPECT imaging and potential clinical applications. J Nucl Med 2013;54:83–89 doi:10.2967/jnumed.112.111476 pmid:23283563
    Abstract/FREE Full Text
  18. 18.↵
    1. Zheng B,
    2. Vazin T,
    3. Goodwill PW, et al
    . Magnetic particle imaging tracks the long-term fate of in vivo neural cell implants with high image contrast. Sci Rep 2015;5:14055 doi:10.1038/srep14055 pmid:26358296
    CrossRefPubMed
  19. 19.↵
    1. Wintermark M,
    2. Sesay M,
    3. Barbier E, et al
    . Comparative overview of brain perfusion imaging techniques. Stroke 2005;36:83–99 doi:10.1161/01.STR.0000177884.72657.8b pmid:16100027
    Abstract/FREE Full Text
  20. 20.↵
    1. Saritas EU,
    2. Goodwill PW,
    3. Croft LR, et al
    . Magnetic particle imaging (MPI) for NMR and MRI researchers. J Magn Reson 2013;229:116–26 doi:10.1016/j.jmr.2012.11.029 pmid:23305842
    CrossRefPubMed
  21. 21.
    1. Knopp T,
    2. Buzug TM
    . Magnetic Particle Imaging: An Introduction to Imaging Principles and Scanner Instrumentation. Heidelberg: Springer-Verlag; 2012
  22. 22.
    1. Kherlopian AR,
    2. Song T,
    3. Duan Q, et al
    . A review of imaging techniques for systems biology. BMC Syst Biol 2008;2:74 doi:10.1186/1752-0509-2-74 pmid:18700030
    CrossRefPubMed
  23. 23.
    1. Weissleder R
    . Scaling down imaging: molecular mapping of cancer in mice. Nat Rev Cancer 2002;2:11–18 doi:10.1038/nrc701 pmid:11902581
    CrossRefPubMedWeb of Science
  24. 24.
    1. Cox B,
    2. Beard P
    . Imaging techniques: super-resolution ultrasound. Nature 2015;527:451–52 doi:10.1038/527451a pmid:26607538
    CrossRefPubMed
  25. 25.
    1. Goodwill PW,
    2. Saritas EU,
    3. Croft LR, et al
    . X-space MPI: magnetic nanoparticles for safe medical imaging. Adv Mater 2012;24:3870–77 doi:10.1002/adma.201200221 pmid:22988557
    CrossRefPubMed
  26. 26.↵
    1. Khandhar AP,
    2. Keselman P,
    3. Kemp SJ, et al
    . Evaluation of PEG-coated iron oxide nanoparticles as blood pool tracers for preclinical magnetic particle imaging. Nanoscale 2017;9:1299–306 doi:10.1039/C6NR08468K pmid:28059427
    CrossRefPubMed
  27. 27.↵
    1. Yu EY,
    2. Chandrasekharan P,
    3. Berzon R, et al
    . Magnetic particle imaging for highly sensitive, quantitative, and safe in vivo gut bleed detection in a murine model. ACS Nano 2017;11:12067–76 doi:10.1021/acsnano.7b04844 pmid:29165995
    CrossRefPubMed
  28. 28.↵
    1. Orendorff R,
    2. Peck AJ,
    3. Zheng B
    . First in vivo traumatic brain injury imaging via magnetic particle imaging. Phys Med Biol 2017;62:3501–09 doi:10.1088/1361-6560/aa52ad pmid:28378708
    CrossRefPubMed
  29. 29.↵
    1. Weizenecker J,
    2. Gleich B,
    3. Rahmer J, et al
    . Three-dimensional real-time in vivo magnetic particle imaging. Phys Med Biol 2009;54:L1–10 doi:10.1088/0031-9155/54/5/L01 pmid:19204385
    CrossRefPubMed
  30. 30.↵
    1. Haegele J,
    2. Biederer S,
    3. Wojtczyk H, et al
    . Toward cardiovascular interventions guided by magnetic particle imaging: first instrument characterization. Magn Reson Med 2013;69:1761–67 doi:10.1002/mrm.24421 pmid:22829518
    CrossRefPubMed
  31. 31.↵
    1. Haegele J,
    2. Rahmer J,
    3. Gleich B, et al
    . Magnetic particle imaging: visualization of instruments for cardiovascular intervention. Radiology 2012;265:933–38 doi:10.1148/radiol.12120424 pmid:22996744
    CrossRefPubMed
  32. 32.↵
    1. Yu EY,
    2. Bishop M,
    3. Zheng B, et al
    . Magnetic particle imaging: a novel in vivo imaging platform for cancer detection. Nano Lett 2017;17:1648–54 doi:10.1021/acs.nanolett.6b04865 pmid:28206771
    CrossRefPubMed
  33. 33.↵
    1. Ryken TC,
    2. Aygun N,
    3. Morris J, et al
    . The role of imaging in the management of progressive glioblastoma: a systematic review and evidence-based clinical practice guideline. J Neurooncol 2014;118:435–60 doi:10.1007/s11060-013-1330-0 pmid:24715656
    CrossRefPubMed
  34. 34.↵
    1. Verma N,
    2. Cowperthwaite MC,
    3. Burnett MG, et al
    . Differentiating tumor recurrence from treatment necrosis: a review of neuro-oncologic imaging strategies. Neuro Oncol 2013;15:515–34 doi:10.1093/neuonc/nos307 pmid:23325863
    CrossRefPubMed
  35. 35.↵
    1. Langen KJ,
    2. Watts C
    . Neuro-oncology: amino acid PET for brain tumours—ready for the clinic? Nat Rev Neurol 2016;12:375–76 doi:10.1038/nrneurol.2016.80 pmid:27282652
    CrossRefPubMed
  36. 36.↵
    1. Maeda H,
    2. Wu J,
    3. Sawa T, et al
    . Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 2000;65:271–84 doi:10.1016/S0168-3659(99)00248-5 pmid:10699287
    CrossRefPubMedWeb of Science
  37. 37.↵
    1. Béduneau A,
    2. Saulnier P,
    3. Benoit JP
    . Active targeting of brain tumors using nanocarriers. Biomaterials 2007;28:4947–67 doi:10.1016/j.biomaterials.2007.06.011 pmid:17716726
    CrossRefPubMedWeb of Science
  38. 38.↵
    1. Cheng Y,
    2. Morshed RA,
    3. Auffinger B, et al
    . Multifunctional nanoparticles for brain tumor imaging and therapy. Adv Drug Deliv Rev 2014;66:42–57 doi:10.1016/j.addr.2013.09.006 pmid:24060923
    CrossRefPubMed
  39. 39.↵
    1. Murase K,
    2. Aoki M,
    3. Banura N, et al
    . Usefulness of magnetic particle imaging for predicting the therapeutic effect of magnetic hyperthermia. Open Journal of Medical Imaging 2015;5:85–99 doi:10.4236/ojmi.2015.52013
    CrossRef
  40. 40.↵
    1. Murase K,
    2. Mimura A,
    3. Banura N, et al
    . Visualization of magnetic nanofibers using magnetic particle imaging. Open Journal of Medical Imaging 2015;05:56–65 doi:10.4236/ojmi.2015.52009
    CrossRef
  41. 41.↵
    1. Eggenhofer E,
    2. Luk F,
    3. Dahlke MH, et al
    . The life and fate of mesenchymal stem cells. Front Immunol 2014;5:148 doi:10.3389/fimmu.2014.00148 pmid:24904568
    CrossRefPubMed
  42. 42.↵
    1. Wu Y,
    2. Zhao RC
    . The role of chemokines in mesenchymal stem cell homing to myocardium. Stem Cell Rev 2012;8:243–50 doi:10.1007/s12015-011-9293-z pmid:1706142
    CrossRefPubMedWeb of Science
  43. 43.↵
    1. Harting MT,
    2. Jimenez F,
    3. Xue H, et al
    . Intravenous mesenchymal stem cell therapy for traumatic brain injury. J Neurosurg 2009;110:1189–97 doi:10.3171/2008.9.JNS08158.Intravenous pmid:19301973
    CrossRefPubMedWeb of Science
  44. 44.↵
    1. Lüdtke-Buzug K,
    2. Rapoport D
    . Characterization of iron-oxide loaded adult stem cells for magnetic particle imaging in targeted cancer therapy. AIP Conf Proc 2010;1311:244–48
  45. 45.↵
    1. Antonelli A,
    2. Sfara C,
    3. Rahmer J, et al
    . Red blood cells as carriers in magnetic particle imaging. Biomed Tech (Berl) 2013;58:517–25 doi:10.1515/bmt-2012-0065 pmid:23839809
    CrossRefPubMed
  46. 46.↵
    1. Markov DE,
    2. Boeve H,
    3. Gleich B, et al
    . Human erythrocytes as nanoparticle carriers for magnetic particle imaging. Phys Med Biol 2010;55:6461–73 doi:10.1088/0031-9155/55/21/008 pmid:20959685
    CrossRefPubMed
  47. 47.↵
    1. Haegele J,
    2. Duschka R,
    3. Graeser M, et al
    . Magnetic particle imaging: kinetics of the intravascular signal in vivo. Int J Nanomedicine 2014;9:4203–09 doi:10.2147/IJN.S49976 pmid:25214784
    CrossRefPubMed
  48. 48.↵
    1. de Vries IJ,
    2. Lesterhuis WJ,
    3. Barentsz JO, et al
    . Magnetic resonance tracking of dendritic cells in melanoma patients for monitoring of cellular therapy. Nat Biotechnol 2005;23:1407–13 doi:10.1038/nbt1154 pmid:16258544
    CrossRefPubMedWeb of Science
  49. 49.↵
    1. Lefevre S,
    2. Ruimy D,
    3. Jehl F, et al
    . Septic arthritis: monitoring with USPIO-enhanced macrophage MR imaging. Radiology 2011;258:722–28 doi:10.1148/radiol.10101272 pmid:21339348
    CrossRefPubMed
  50. 50.↵
    1. Lutz AM,
    2. Weishaupt D,
    3. Persohn E, et al
    . Imaging of macrophages in soft-tissue infection in rats: relationship between ultrasmall superparamagnetic iron oxide dose and MR signal characteristics. Radiology 2005;234:765–75 doi:10.1148/radiol.2343031172 pmid:15665219
    CrossRefPubMed
  51. 51.↵
    1. Ruehm SG,
    2. Corot C,
    3. Vogt P, et al
    . Magnetic resonance imaging of atherosclerotic plaque with ultrasmall superparamagnetic particles of iron oxide in hyperlipidemic rabbits. Circulation 2001;103:415–22 doi:10.1161/01.CIR.103.3.415 pmid:11157694
    Abstract/FREE Full Text
  52. 52.↵
    1. Sigovan M,
    2. Boussel L,
    3. Sulaiman A, et al
    . Rapid-clearance iron nanoparticles for inflammation imaging of atherosclerotic plaque: initial experience in animal model. Radiology 2009;252:401–09 doi:10.1148/radiol.2522081484 pmid:19703881
    CrossRefPubMedWeb of Science
  53. 53.↵
    1. Metz S,
    2. Beer AJ,
    3. Settles M, et al
    . Characterization of carotid artery plaques with USPIO-enhanced MRI: assessment of inflammation and vascularity as in vivo imaging biomarkers for plaque vulnerability. Int J Cardiovasc Imaging 2011;27:901–12 doi:10.1007/s10554-010-9736-7 pmid:20972832
    CrossRefPubMed
  54. 54.↵
    1. McAteer MA,
    2. Sibson NR,
    3. von Zur Muhlen C, et al
    . In vivo magnetic resonance imaging of acute brain inflammation using microparticles of iron oxide. Nat Med 2007;13:1253–58 doi:10.1038/nm1631 pmid:17891147
    CrossRefPubMedWeb of Science
  55. 55.↵
    1. Wang YX
    . Superparamagnetic iron oxide based MRI contrast agents: current status of clinical application. Quant Imaging Med Surg 2011;1:35–40 doi:10.3978/j.issn.2223-4292.2011.08.03 pmid:23256052
    CrossRefPubMed
  56. 56.↵
    1. Panagiotopoulos N,
    2. Duschka RL,
    3. Ahlborg M, et al
    . Magnetic particle imaging: current developments and future directions. Int J Nanomedicine 2015;10:3097–114 doi:10.2147/IJN.S70488 pmid:25960650
    CrossRefPubMed
  57. 57.↵
    1. Wang YX,
    2. Hussain SM,
    3. Krestin GP
    . Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Eur Radiol 2001;11:2319–31 doi:10.1007/s003300100908 pmid:11702180
    CrossRefPubMedWeb of Science
  58. 58.↵
    1. Bonnemain B
    . Superparamagnetic agents in magnetic resonance imaging: physicochemical characteristics and clinical applications—a review. J Drug Target 1998;6:167–74 doi:10.3109/10611869808997890 pmid:9888302
    CrossRefPubMedWeb of Science
  59. 59.↵
    1. Sun C,
    2. Lee JS,
    3. Zhang M
    . Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev 2008;60:1252–65 doi:10.1016/j.addr.2008.03.018 pmid:18558452
    CrossRefPubMedWeb of Science
  60. 60.↵
    1. Pablico-Lansigan MH,
    2. Situ SF,
    3. Samia AC
    . Magnetic particle imaging: advancements and perspectives for real-time in vivo monitoring and image-guided therapy. Nanoscale 2013;5:4040–55 doi:10.1039/c3nr00544e pmid:23538400
    CrossRefPubMed
  61. 61.↵
    1. Bauer LM,
    2. Situ SF,
    3. Griswold MA, et al
    . Magnetic particle imaging tracers: state-of-the-art and future directions. J Phys Chem Lett 2015;6:2509–17 doi:10.1021/acs.jpclett.5b00610 pmid:26266727
    CrossRefPubMed
  62. 62.↵
    1. Reimer P,
    2. Tombach B
    . Hepatic MRI with SPIO: detection and characterization of focal liver lesions. Eur Radiol 1998;1204:1198–204 doi:10.1007/s003300050535 pmid:9724439
    CrossRefPubMed
  63. 63.↵
    1. Reimer P,
    2. Balzer T
    . Ferucarbotran (Resovist): a new clinically approved RES-specific contrast agent for contrast-enhanced MRI of the liver—properties, clinical development, and applications. Eur Radiol 2003;13:1266–76 doi:10.1007/s00330-002-1721-7 pmid:12764641
    CrossRefPubMed
  64. 64.↵
    1. Eberbeck D,
    2. Wiekhorst F,
    3. Wagner S, et al
    . How the size distribution of magnetic nanoparticles determines their magnetic particle imaging performance. Appl Phys Lett 2011;98:182502 doi:10.1063/1.3586776
    CrossRef
  65. 65.↵
    1. Khandhar AP,
    2. Ferguson RM,
    3. Arami H, et al
    . Tuning surface coatings of optimized magnetite nanoparticle tracers for in vivo magnetic particle imaging. IEEE Trans Magn 2015;51:395–401 doi:10.1109/TMAG.2014.2321096
    CrossRef
  66. 66.↵
    1. Arami H,
    2. Ferguson RM,
    3. Khandhar AP, et al
    . Size-dependent ferrohydrodynamic relaxometry of magnetic particle imaging tracers in different environments. Med Phys 2013;40:071904 doi:10.1118/1.4810962 pmid:23822441
    CrossRefPubMed
  67. 67.↵
    1. Ferguson RM,
    2. Minard KR,
    3. Khandhar AP, et al
    . Optimizing magnetite nanoparticles for mass sensitivity in magnetic particle imaging. Med Phys 2011;38:1619–26 doi:10.1118/1.3554646 pmid:21520874
    CrossRefPubMed
  68. 68.↵
    1. Ferguson RM,
    2. Minard KR,
    3. Krishnan KM
    . Optimization of nanoparticle core size for magnetic particle imaging. J Magn Magn Mater 2009;321:1548–51 doi:10.1016/j.jmmm.2009.02.083 pmid:19606261
    CrossRefPubMed
  69. 69.↵
    1. Ferguson RM,
    2. Khandhar AP,
    3. Krishnan KM
    . Tracer design for magnetic particle imaging (invited). J Appl Phys 2012;07B318 doi:10.1063/1.3676053
    CrossRef
  70. 70.↵
    1. Arami H,
    2. Krishnan KM
    . Highly stable amine functionalized iron oxide nanoparticles designed for magnetic particle imaging (MPI). IEEE Trans Magn 2013;49:3500–03 doi:10.1109/TMAG.2013.2245110
    CrossRef
  71. 71.↵
    1. Ludwig F,
    2. Wawrzik T,
    3. Yoshida T, et al
    . Optimization of magnetic nanoparticles for magnetic particle imaging. IEEE Trans Magn 2012;48:3780–83 doi:10.1109/TMAG.2012.2197601
    CrossRef
  72. 72.↵
    1. Starmans LW,
    2. Burdinski D,
    3. Haex NP, et al
    . Iron oxide nanoparticle-micelles (ION-micelles) for sensitive (molecular) magnetic particle imaging and magnetic resonance imaging. PLoS One 2013;8:e57335 doi:10.1371/journal.pone.0057335 pmid:23437371
    CrossRefPubMed
  73. 73.↵
    1. Starmans LW,
    2. Moonen RP,
    3. Aussems-Custers E, et al
    . Evaluation of iron oxide nanoparticle micelles for magnetic particle imaging (MPI) of thrombosis. PLoS One 2015;10:e0119257 doi:10.1371/journal.pone.0119257 pmid:25746677
    CrossRefPubMed
  74. 74.↵
    1. Ishihara Y,
    2. Honma T,
    3. Nohara S, et al
    . Evaluation of magnetic nanoparticle samples made from biocompatible ferucarbotran by time-correlation magnetic particle imaging reconstruction method. BMC Med Imaging 2013;13:15 doi:10.1186/1471-2342-13-15 pmid:23734917
    CrossRefPubMed
  75. 75.↵
    1. Lindemann A,
    2. Lüdtke-Buzug K,
    3. Fräderich BM, et al
    . Biological impact of superparamagnetic iron oxide nanoparticles for magnetic particle imaging of head and neck cancer cells. Int J Nanomedicine 2014;9:5025–40 doi:10.2147/IJN.S63873 pmid:25378928
    CrossRefPubMed
  76. 76.↵
    1. Kehagias DT,
    2. Gouliamos AD,
    3. Smyrniotis V, et al
    . Diagnostic efficacy and safety of MRI of the liver with superparamagnetic iron oxide particles (SH U 555 A). J Magn Reson Imaging 2001;14:595–601 doi:10.1002/jmri.1224 pmid:11747012
    CrossRefPubMed
  77. 77.↵
    1. Bernd H,
    2. De Kerviler E,
    3. Gaillard S, et al
    . Safety and tolerability of ultrasmall superparamagnetic iron oxide contrast agent: comprehensive analysis of a clinical development program. Invest Radiol 2009;44:336–42 doi:10.1097/RLI.0b013e3181a0068b pmid:19661843
    CrossRefPubMed
  78. 78.↵
    1. Singh A,
    2. Patel T,
    3. Hertel J, et al
    . Safety of ferumoxytol in patients with anemia and CKD. Am J Kidney Dis 2008;52:907–15 doi:10.1053/j.ajkd.2008.08.001 pmid:18824288
    CrossRefPubMedWeb of Science
  79. 79.↵
    1. Saritas EU,
    2. Goodwill PW,
    3. Zhang GZ, et al
    . Magnetostimulation limits in magnetic particle imaging. IEEE Trans Med Imaging 2013;32:1600–10 doi:10.1109/TMI.2013.2260764 pmid:23649181
    CrossRefPubMed
  80. 80.↵
    1. Buzug TM,
    2. Knopp T
    1. Saritas EU,
    2. Goodwill PW,
    3. Zhang GZ, et al
    . Safety limits for human-size magnetic particle imaging systems. In: Buzug TM, Knopp T, eds. Magnetic Particle Imaging. Berlin: Springer-Verlag; 2011:325–30
  81. 81.↵
    1. Schmale I,
    2. Gleich B,
    3. Rahmer J, et al
    . MPI safety in the view of MRI safety standards. IEEE Trans Mag 2015;51:1–4 doi:10.1109/TMAG.2014.2322940
    CrossRefPubMed
  82. 82.↵
    1. Duschka RL,
    2. Wojtczyk H,
    3. Panagiotopoulos N, et al
    . Safety measurements for heating of instruments for cardiovascular interventions in magnetic particle imaging (MPI): first experiences. J Healthc Eng 2014;5:79–93 doi:10.1260/2040-2295.5.1.79 pmid:24691388
    CrossRefPubMed
  83. 83.↵
    1. Croft LR,
    2. Goodwill PW,
    3. Konkle JJ, et al
    . Low drive field amplitude for improved image resolution in magnetic particle imaging. Med Phys 2016;43:424 doi:10.1118/1.4938097 pmid:26745935
    CrossRefPubMed
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 40 (2)
American Journal of Neuroradiology
Vol. 40, Issue 2
1 Feb 2019
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
A Review of Magnetic Particle Imaging and Perspectives on Neuroimaging
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
L.C. Wu, Y. Zhang, G. Steinberg, H. Qu, S. Huang, M. Cheng, T. Bliss, F. Du, J. Rao, G. Song, L. Pisani, T. Doyle, S. Conolly, K. Krishnan, G. Grant, M. Wintermark
A Review of Magnetic Particle Imaging and Perspectives on Neuroimaging
American Journal of Neuroradiology Feb 2019, 40 (2) 206-212; DOI: 10.3174/ajnr.A5896

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
A Review of Magnetic Particle Imaging and Perspectives on Neuroimaging
L.C. Wu, Y. Zhang, G. Steinberg, H. Qu, S. Huang, M. Cheng, T. Bliss, F. Du, J. Rao, G. Song, L. Pisani, T. Doyle, S. Conolly, K. Krishnan, G. Grant, M. Wintermark
American Journal of Neuroradiology Feb 2019, 40 (2) 206-212; DOI: 10.3174/ajnr.A5896
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • Conclusions
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • In vivo detection of pulmonary mucociliary clearance: present challenges and future directions
  • Labeling Natural Killer cells with superparamagnetic iron oxide nanoparticles for detection by preclinical and clinical-scale magnetic particle imaging
  • Inter-user comparison for quantification of superparamagnetic iron oxides with magnetic particle imaging across two institutions highlights a need for standardized approaches
  • A method for the efficient iron-labeling of patient-derived xenograft cells and cellular imaging validation
  • Perfusion, cryopreservation, and nanowarming of whole hearts using colloidally stable magnetic cryopreservation agent solutions
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • Giant Cell Arteritis: Important Imaging Findings
  • DCE MRI in Spinal Disease Assessment
  • Cerebrovascular Anomalies in Fetal Imaging
Show more Review Article

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire