Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Review ArticleAdult Brain
Open Access

Emerging Use of Ultra-High-Field 7T MRI in the Study of Intracranial Vascularity: State of the Field and Future Directions

J.W. Rutland, B.N. Delman, C.M. Gill, C. Zhu, R.K. Shrivastava and P. Balchandani
American Journal of Neuroradiology January 2020, 41 (1) 2-9; DOI: https://doi.org/10.3174/ajnr.A6344
J.W. Rutland
aFrom the Translational and Molecular Imaging Institute (J.W.R., B.N.D., P.B.)
bDepartments of Neurosurgery (J.W.R., C.M.G., R.K.S.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for J.W. Rutland
B.N. Delman
aFrom the Translational and Molecular Imaging Institute (J.W.R., B.N.D., P.B.)
cDiagnostic, Molecular, and Interventional Radiology (B.N.D.), Icahn School of Medicine at Mount Sinai, New York, New York
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for B.N. Delman
C.M. Gill
bDepartments of Neurosurgery (J.W.R., C.M.G., R.K.S.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for C.M. Gill
C. Zhu
dDepartment of Radiology and Biomedical Imaging (C.Z.), University of California San Francisco, San Francisco, California.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for C. Zhu
R.K. Shrivastava
bDepartments of Neurosurgery (J.W.R., C.M.G., R.K.S.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for R.K. Shrivastava
P. Balchandani
aFrom the Translational and Molecular Imaging Institute (J.W.R., B.N.D., P.B.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for P. Balchandani
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Balchandani P,
    2. Naidich TP
    . Ultra-high-field MR neuroimaging. AJNR Am J Neuroradiol 2015;36:1204–15 doi:10.3174/ajnr.A4180 pmid:25523591
    Abstract/FREE Full Text
  2. 2.↵
    1. Wrede KH,
    2. Dammann P,
    3. Mönninghoff C, et al
    . Non-enhanced MR imaging of cerebral aneurysms: 7 Tesla versus 1.5 Tesla. PLoS One 2014;9:e84562 doi:10.1371/journal.pone.0084562 pmid:24400100
    CrossRefPubMed
  3. 3.↵
    1. Deistung A,
    2. Rauscher A,
    3. Sedlacik J, et al
    . Susceptibility weighted imaging at ultra high magnetic field strengths: theoretical considerations and experimental results. Magn Reson Med 2008;60:1155–68 doi:10.1002/mrm.21754 pmid:18956467
    CrossRefPubMedWeb of Science
  4. 4.↵
    1. Grabner G,
    2. Kiesel B,
    3. Wöhrer A, et al
    . Local image variance of 7 Tesla SWI is a new technique for preoperative characterization of diffusely infiltrating gliomas: correlation with tumour grade and IDH1 mutational status. Eur Radiol 2017;27:1556–67 doi:10.1007/s00330-016-4451-y pmid:27300198
    CrossRefPubMed
  5. 5.↵
    1. Brat DJ,
    2. Van Meir EG
    . Glomeruloid microvascular proliferation orchestrated by VPF/VEGF: a new world of angiogenesis research. Am J Pathol 2001;158:789–96 doi:10.1016/S0002-9440(10)64025-4 pmid:11238026
    CrossRefPubMedWeb of Science
  6. 6.↵
    1. Brem S
    . The role of vascular proliferation in the growth of brain tumors. Clin Neurosurg 1976;23:440–43 pmid:975695
    PubMed
  7. 7.↵
    1. Moenninghoff C,
    2. Maderwald S,
    3. Theysohn JM, et al
    . Imaging of adult astrocytic brain tumours with 7T MRI: preliminary results. Eur Radiol 2010;20:704–13 doi:10.1007/s00330-009-1592-2 pmid:19763581
    CrossRefPubMed
  8. 8.↵
    1. Paek SL,
    2. Chung YS,
    3. Paek SH, et al
    . Early experience of pre- and post-contrast 7.0T MRI in brain tumors. J Korean Med Sci 2013;28:1362–72 doi:10.3346/jkms.2013.28.9.1362 pmid:24015044
    CrossRefPubMed
  9. 9.↵
    1. Christoforidis GA,
    2. Yang M,
    3. Abduljalil A, et al
    . “Tumoral pseudoblush” identified within gliomas at high-spatial-resolution ultrahigh-field-strength gradient-echo MR imaging corresponds to microvascularity at stereotactic biopsy. Radiology 2012;264:210–17 doi:10.1148/radiol.12110799 pmid:22627600
    CrossRefPubMed
  10. 10.↵
    1. Barrett TF,
    2. Dyvorne HA,
    3. Padormo F, et al
    . First application of 7-T magnetic resonance imaging in endoscopic endonasal surgery of skull base tumors. World Neurosurg 2017;103:600–10 doi:10.1016/j.wneu.2017.03.088 pmid:28359922
    CrossRefPubMed
  11. 11.↵
    1. Regnery S,
    2. Knowles BR,
    3. Paech D, et al
    . High-resolution FLAIR MRI at 7 Tesla for treatment planning in glioblastoma patients. Radiother Oncol 2019;130:180–84 doi:10.1016/j.radonc.2018.08.002 pmid:30177373
    CrossRefPubMed
  12. 12.↵
    1. Radbruch A,
    2. Eidel O,
    3. Wiestler B, et al
    . Quantification of tumor vessels in glioblastoma patients using time-of-flight angiography at 7 Tesla: a feasibility study. PLoS One 2014;9:e110727 doi:10.1371/journal.pone.0110727 pmid:25415327
    CrossRefPubMed
  13. 13.↵
    1. Wen PY,
    2. Kesari S
    . Malignant gliomas in adults. N Engl J Med 2008;359:492–507 doi:10.1056/NEJMra0708126 pmid:18669428
    CrossRefPubMedWeb of Science
  14. 14.↵
    1. Emblem KE,
    2. Mouridsen K,
    3. Bjornerud A, et al
    . Vessel architectural imaging identifies cancer patient responders to anti-angiogenic therapy. Nat Med 2013;19:1178 doi:10.1038/nm.3289 pmid:23955713
    CrossRefPubMed
  15. 15.↵
    1. Monninghoff C,
    2. Maderwald S,
    3. Theysohn JM, et al
    . Imaging of brain metastases of bronchial carcinomas with 7T MRI: initial results. Rofo 2010;182:764–72 doi:10.1055/s-0029-1245440 pmid:20544578
    CrossRefPubMed
  16. 16.↵
    1. Nobauer-Huhmann IM,
    2. Ba-Ssalamah A,
    3. Mlynarik V, et al
    . Magnetic resonance imaging contrast enhancement of brain tumors at 3 Tesla versus 1.5 Tesla. Invest Radiol 2002;37:114–19 doi:10.1097/00004424-200203000-00003 pmid:11882790
    CrossRefPubMed
  17. 17.↵
    1. de Rotte AA,
    2. van der Kolk AG,
    3. Rutgers D, et al
    . Feasibility of high-resolution pituitary MRI at 7.0 Tesla. Eur Radiol 2014;24:2005–11 doi:10.1007/s00330-014-3230-x pmid:24871334
    CrossRefPubMed
  18. 18.↵
    1. Song SW,
    2. Son YD,
    3. Cho Z-H, et al
    . Experience with 7.0 T MRI in patients with supratentorial meningiomas. J Korean Neurosurg Soc 2016;59:405–09 doi:10.3340/jkns.2016.59.4.405 pmid:27446524
    CrossRefPubMed
  19. 19.↵
    1. Belliveau JG,
    2. Bauman GS,
    3. Tay KY, et al
    . Initial investigation into microbleeds and white matter signal changes following radiotherapy for low-grade and benign brain tumors using ultra-high-field MRI techniques. AJNR Am J Neuroradiol 2017;38:2251–56 doi:10.3174/ajnr.A5395 pmid:28970242
    Abstract/FREE Full Text
  20. 20.↵
    1. Lupo JM,
    2. Chuang CF,
    3. Chang SM, et al
    . 7-Tesla susceptibility-weighted imaging to assess the effects of radiotherapy on normal-appearing brain in patients with glioma. Int J Radiat Oncol Biol Phys 2012;82:e493–500 doi:10.1016/j.ijrobp.2011.05.046 pmid:22000750
    CrossRefPubMed
  21. 21.↵
    1. Morrison MA,
    2. Hess CP,
    3. Clarke JL, et al
    . Risk factors of radiotherapy-induced cerebral microbleeds and serial analysis of their size compared with white matter changes: a 7T MRI study in 113 adult patients with brain tumors. J Magn Reson Imaging 2019;50:868–77 doi:10.1002/jmri.26651 pmid:30663150
    CrossRefPubMed
  22. 22.↵
    1. Nandigam RN,
    2. Viswanathan A,
    3. Delgado P, et al
    . MR imaging detection of cerebral microbleeds: effect of susceptibility-weighted imaging, section thickness, and field strength. AJNR Am J Neuroradiol 2009;30:338–43 doi:10.3174/ajnr.A1355 pmid:19001544
    Abstract/FREE Full Text
  23. 23.↵
    1. Bian W,
    2. Hess CP,
    3. Chang SM, et al
    . Susceptibility-weighted MR imaging of radiation therapy-induced cerebral microbleeds in patients with glioma: a comparison between 3T and 7T. Neuroradiology 2014;56:91–96 doi:10.1007/s00234-013-1297-8 pmid:24281386
    CrossRefPubMed
  24. 24.↵
    1. Grabner G,
    2. Nobauer I,
    3. Elandt K, et al
    . Longitudinal brain imaging of five malignant glioma patients treated with bevacizumab using susceptibility-weighted magnetic resonance imaging at 7T. Magn Reson Imaging 2012;30:139–47 doi:10.1016/j.mri.2011.08.004 pmid:21982163
    CrossRefPubMedWeb of Science
  25. 25.↵
    1. Rondinoni C,
    2. Magnun C,
    3. Vallota da Silva A, et al
    . Epilepsy under the scope of ultra-high field MRI. Epilepsy Behav 2019 Jul 10. [Epub ahead of print] doi:10.1016/j.yebeh.2019.06.010 pmid:31300381
    CrossRefPubMed
  26. 26.↵
    1. Bertalanffy H,
    2. Benes L,
    3. Miyazawa T, et al
    . Cerebral cavernomas in the adult. Review of the literature and analysis of 72 surgically treated patients. Neurosurg Rev 2002;25:1–53; discussion 54–55 pmid:11954761
    CrossRefPubMedWeb of Science
  27. 27.↵
    1. Rosenow F,
    2. Alonso-Vanegas MA,
    3. Baumgartner C, et al
    . Cavernoma-Related Epilepsy: Review and Recommendations for Management—Report of the Surgical Task Force of the ILAE Commission on Therapeutic Strategies. Epilepsia 2013;54:2025–35 doi:10.1111/epi.12402 pmid:24134485
    CrossRefPubMed
  28. 28.↵
    1. Ryvlin P,
    2. Mauguière F,
    3. Sindou M, et al
    . Interictal cerebral metabolism and epilepsy in cavernous angiomas. Brain 1995;118:677–87 doi:10.1093/brain/118.3.677 pmid:7600085
    CrossRefPubMed
  29. 29.↵
    1. Englot DJ,
    2. Han SJ,
    3. Lawton MT, et al
    . Predictors of seizure freedom in the surgical treatment of supratentorial cavernous malformations. J Neurosurg 2011;115:1169–74 doi:10.3171/2011.7.JNS11536 pmid:21819194
    CrossRefPubMed
  30. 30.↵
    1. Leeman-Markowski B
    . Review of MRI-negative epilepsy. JAMA Neurol 2016;73:1377 doi:10.1001/jamaneurol.2016.3698
    CrossRef
  31. 31.↵
    1. Schlamann M,
    2. Maderwald S,
    3. Becker W, et al
    . Cerebral cavernous hemangiomas at 7 Tesla: initial experience. Acad Radiology 2010;17:3–6 doi:10.1016/j.acra.2009.10.001 pmid:19910215
    CrossRefPubMed
  32. 32.↵
    1. Pinker K,
    2. Stavrou I,
    3. Szomolanyi P, et al
    . Improved preoperative evaluation of cerebral cavernomas by high-field, high-resolution susceptibility-weighted magnetic resonance imaging at 3 Tesla: comparison with standard (1.5 T) magnetic resonance imaging and correlation with histopathological findings: preliminary results. Invest Radiol 2007;42:346–51 doi:10.1097/01.rli.0000262744.85397.fc pmid:17507804
    CrossRefPubMed
  33. 33.↵
    1. Feldman RE,
    2. Delman BN,
    3. Pawha PS, et al
    . 7T MRI in epilepsy patients with previously normal clinical MRI exams compared against healthy controls. PLoS One 2019;14:e0213642 doi:10.1371/journal.pone.0213642 pmid:30889199
    CrossRefPubMed
  34. 34.↵
    1. Colon AJ,
    2. van Osch MJ,
    3. Buijs M, et al
    . Detection superiority of 7 T MRI protocol in patients with epilepsy and suspected focal cortical dysplasia. Acta Neurol Belg 2016;116:259–69 doi:10.1007/s13760-016-0662-x pmid:27389578
    CrossRefPubMed
  35. 35.↵
    1. Baumann CR,
    2. Schuknecht B,
    3. Lo Russo G, et al
    . Seizure outcome after resection of cavernous malformations is better when surrounding hemosiderin-stained brain also is removed. Epilepsia 2006;47:563–66 doi:10.1111/j.1528-1167.2006.00468.x pmid:16529622
    CrossRefPubMedWeb of Science
  36. 36.↵
    1. Yeon JY,
    2. Kim JS,
    3. Choi SJ, et al
    . Supratentorial cavernous angiomas presenting with seizures: surgical outcomes in 60 consecutive patients. Seizure 2009;18:14–20 doi:10.1016/j.seizure.2008.05.010 pmid:18656386
    CrossRefPubMed
  37. 37.↵
    1. Vlak MH,
    2. Algra A,
    3. Brandenburg R, et al
    . Prevalence of unruptured intracranial aneurysms, with emphasis on sex, age, comorbidity, country, and time period: a systematic review and meta-analysis. Lancet Neurol 2011;10:626–36 doi:10.1016/S1474-4422(11)70109-0 pmid:21641282
    CrossRefPubMedWeb of Science
  38. 38.↵
    1. Umutlu L,
    2. Theysohn N,
    3. Maderwald S, et al
    . 7 Tesla MPRAGE imaging of the intracranial arterial vasculature: nonenhanced versus contrast-enhanced. Acad Radiol 2013;20:628–34 doi:10.1016/j.acra.2012.12.012 pmid:23473725
    CrossRefPubMed
  39. 39.↵
    1. Vergouwen MDI,
    2. Backes D,
    3. van der Schaaf IC, et al
    . Gadolinium enhancement of the aneurysm wall in unruptured intracranial aneurysms is associated with an increased risk of aneurysm instability: a follow-up study. AJNR Am J Neuroradiol 2019;40:1112 doi:10.3174/ajnr.A6105
    Abstract/FREE Full Text
  40. 40.↵
    1. van der Kolk AG,
    2. Hendrikse J,
    3. Brundel M, et al
    . Multi-sequence whole-brain intracranial vessel wall imaging at 7.0 tesla. Eur Radiol 2013;23:2996–3004 doi:10.1007/s00330-013-2905-z pmid:23736375
    CrossRefPubMed
  41. 41.↵
    1. Sato T,
    2. Matsushige T,
    3. Chen B, et al
    . Wall contrast enhancement of thrombosed intracranial aneurysms at 7T MRI. AJNR Am J Neuroradiol 2019;40:1106–11 doi:10.3174/ajnr.A6084 pmid:31147351
    Abstract/FREE Full Text
  42. 42.↵
    1. Wrede KH,
    2. Matsushige T,
    3. Goericke SL, et al
    . Non-enhanced magnetic resonance imaging of unruptured intracranial aneurysms at 7 Tesla: comparison with digital subtraction angiography. Eur Radiol 2017;27:354–64 doi:10.1007/s00330-016-4323-5 pmid:26993650
    CrossRefPubMed
  43. 43.↵
    1. Liu X,
    2. Zhang Z,
    3. Zhu C, et al
    . Wall enhancement of intracranial saccular and fusiform aneurysms may differ in intensity and extension: a pilot study using 7-T high-resolution black-blood MRI. Eur Radiol 2019 Jun 19. [Epub ahead of print] doi:10.1007/s00330-019-06275-9 pmid:31218429
    CrossRefPubMed
  44. 44.↵
    1. Blankena R,
    2. Kleinloog R,
    3. Verweij BH, et al
    . Thinner regions of intracranial aneurysm wall correlate with regions of higher wall shear stress: a 7T MRI study. AJNR Am J Neuroradiol 2016;37:1310–17 doi:10.3174/ajnr.A4734 pmid:26892986
    Abstract/FREE Full Text
  45. 45.↵
    1. Kleinloog R,
    2. Zwanenburg JJ,
    3. Schermers B, et al
    . Quantification of intracranial aneurysm volume pulsation with 7T MRI. AJNR Am J Neuroradiol 2018;39:713–19 doi:10.3174/ajnr.A5546 pmid:29472302
    Abstract/FREE Full Text
  46. 46.↵
    1. Wermer MJ,
    2. van Walderveen MA,
    3. Garpebring A, et al
    . 7 Tesla MRA for the differentiation between intracranial aneurysms and infundibula. Magn Reson Imaging 2017;37:16–20 doi:10.1016/j.mri.2016.11.006 pmid:27840274
    CrossRefPubMed
  47. 47.↵
    1. Arenillas JF
    . Intracranial atherosclerosis: current concepts. Stroke 2011;42:(1 Suppl):S20–23 doi:10.1161/STROKEAHA.110.597278 pmid:21164126
    Abstract/FREE Full Text
  48. 48.↵
    1. Harteveld AA,
    2. van der Kolk AG,
    3. van der Worp HB, et al
    . Detecting intracranial vessel wall lesions with 7T-magnetic resonance imaging: patients with posterior circulation ischemia versus healthy controls. Stroke 2017;48:2601–04 doi:10.1161/STROKEAHA.017868 pmid:28701579
    Abstract/FREE Full Text
  49. 49.↵
    1. Harteveld AA,
    2. van der Kolk AG,
    3. van der Worp HB, et al
    . High-resolution intracranial vessel wall MRI in an elderly asymptomatic population: comparison of 3T and 7T. Eur Radiol 2017;27:1585–95 doi:10.1007/s00330-016-4483-3 pmid:27387876
    CrossRefPubMed
  50. 50.↵
    1. Harteveld AA,
    2. Denswil NP,
    3. Van Hecke W, et al
    . Ex vivo vessel wall thickness measurements of the human circle of Willis using 7T MRI. Atherosclerosis 2018;273:106–14 doi:10.1016/j.atherosclerosis.2018.04.023 pmid:29715587
    CrossRefPubMed
  51. 51.↵
    1. Zhu C,
    2. Haraldsson H,
    3. Tian B, et al
    . High resolution imaging of the intracranial vessel wall at 3 and 7 T using 3D fast spin echo MRI. MAGMA 2016;29:559–70 doi:10.1007/s10334-016-0531-x pmid:26946509
    CrossRefPubMed
  52. 52.↵
    1. Zwartbol MH,
    2. van der Kolk AG,
    3. Ghaznawi R, et al
    . Intracranial vessel wall lesions on 7T MRI (magnetic resonance imaging). Stroke 2019;50:88–94 doi:10.1161/STROKEAHA.118.022509 pmid:30582831
    CrossRefPubMed
  53. 53.↵
    1. Qiao Y,
    2. Suri FK,
    3. Zhang Y, et al
    . Racial differences in prevalence and risk for intracranial atherosclerosis in a US community-based population. JAMA Cardiol 2017;2:1341–48 doi:10.1001/jamacardio.2017.4041 pmid:29094154
    CrossRefPubMed
  54. 54.↵
    1. van der Kolk AG,
    2. Zwanenburg JJ,
    3. Denswil NP, et al
    . Imaging the intracranial atherosclerotic vessel wall using 7T MRI: initial comparison with histopathology. AJNR Am J Neuroradiol 2015;36:694–701 doi:10.3174/ajnr.A4178 pmid:25477359
    Abstract/FREE Full Text
  55. 55.↵
    1. Kroner ES,
    2. van Schinkel LD,
    3. Versluis MJ, et al
    . Ultrahigh-field 7-T magnetic resonance carotid vessel wall imaging: initial experience in comparison with 3-T field strength. Invest Radiol 2012;47:697–704 doi:10.1097/RLI.0b013e31826dc174 pmid:22996317
    CrossRefPubMed
  56. 56.↵
    1. Koning W,
    2. de Rotte AA,
    3. Bluemink JJ, et al
    . MRI of the carotid artery at 7 Tesla: quantitative comparison with 3 Tesla. J Magn Reson Imaging 2015;41:773–80 doi:10.1002/jmri.24601 pmid:24578311
    CrossRefPubMed
  57. 57.↵
    1. Majidi S,
    2. Sein J,
    3. Watanabe M, et al
    . Intracranial-derived atherosclerosis assessment: an in vitro comparison between virtual histology by intravascular ultrasonography, 7T MRI, and histopathologic findings. AJNR Am J Neuroradiol 2013;34:2259–64 doi:10.3174/ajnr.A3631 pmid:23811977
    Abstract/FREE Full Text
  58. 58.↵
    1. Madai VI,
    2. von Samson-Himmelstjerna FC,
    3. Bauer M, et al
    . Ultrahigh-field MRI in human ischemic stroke: a 7 Tesla study. PLoS One 2012;7:e37631 doi:10.1371/journal.pone.0037631 pmid:22701525
    CrossRefPubMed
  59. 59.↵
    1. Miyazawa H,
    2. Natori T,
    3. Kameda H, et al
    . Detecting lenticulostriate artery lesions in patients with acute ischemic stroke using high-resolution MRA at 7T. Int J Stroke 2019;14:290–97 doi:10.1177/1747493018806163 pmid:30299228
    CrossRefPubMed
  60. 60.↵
    1. Kang CK,
    2. Park CA,
    3. Park CW, et al
    . Lenticulostriate arteries in chronic stroke patients visualised by 7T magnetic resonance angiography. Int J Stroke 2010;5:374–80 doi:10.1111/j.1747-4949.2010.00464.x pmid:20854620
    CrossRefPubMedWeb of Science
  61. 61.↵
    1. Cho ZH,
    2. Kang CK,
    3. Han JY, et al
    . Observation of the lenticulostriate arteries in the human brain in vivo using 7.0T MR angiography. Stroke 2008;39:1604–06 doi:10.1161/STROKEAHA.107.508002 pmid:18340096
    Abstract/FREE Full Text
  62. 62.↵
    1. Dengler NF,
    2. Madai VI,
    3. Wuerfel J, et al
    . Moyamoya vessel pathology imaged by ultra-high-field magnetic resonance imaging at 7.0 T. J Stroke Cerebrovasc Dis 2016;25:1544–51 doi:10.1016/j.jstrokecerebrovasdis.2016.01.041 pmid:27053027
    CrossRefPubMed
  63. 63.↵
    1. Oh BH,
    2. Moon HC,
    3. Baek HM, et al
    . Comparison of 7T and 3T MRI in patients with Moyamoya disease. Magn Reson Imaging 2017;37:134–38 doi:10.1016/j.mri.2016.11.019 pmid:27899331
    CrossRefPubMed
  64. 64.↵
    1. Lee A,
    2. McCartney S,
    3. Burbidge C, et al
    . Trigeminal neuralgia occurs and recurs in the absence of neurovascular compression. J Neurosurg 2014;120:1048–54 doi:10.3171/2014.1.JNS131410 pmid:24506241
    CrossRefPubMed
  65. 65.↵
    1. Heverhagen JT,
    2. Bourekas E,
    3. Sammet S, et al
    . Time-of-flight magnetic resonance angiography at 7 Tesla. Invest Radiol 2008;43:568–73 doi:10.1097/RLI.0b013e31817e9b2c pmid:18648256
    CrossRefPubMed
  66. 66.↵
    1. Moon HC,
    2. You ST,
    3. Baek HM, et al
    . 7.0 Tesla MRI tractography in patients with trigeminal neuralgia. Magn Reson Imaging 2018;54:265–70 doi:10.1016/j.mri.2017.12.033 pmid:29305127
    CrossRefPubMed
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 41 (1)
American Journal of Neuroradiology
Vol. 41, Issue 1
1 Jan 2020
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Emerging Use of Ultra-High-Field 7T MRI in the Study of Intracranial Vascularity: State of the Field and Future Directions
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
J.W. Rutland, B.N. Delman, C.M. Gill, C. Zhu, R.K. Shrivastava, P. Balchandani
Emerging Use of Ultra-High-Field 7T MRI in the Study of Intracranial Vascularity: State of the Field and Future Directions
American Journal of Neuroradiology Jan 2020, 41 (1) 2-9; DOI: 10.3174/ajnr.A6344

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Emerging Use of Ultra-High-Field 7T MRI in the Study of Intracranial Vascularity: State of the Field and Future Directions
J.W. Rutland, B.N. Delman, C.M. Gill, C. Zhu, R.K. Shrivastava, P. Balchandani
American Journal of Neuroradiology Jan 2020, 41 (1) 2-9; DOI: 10.3174/ajnr.A6344
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATION:
    • CLINICAL APPLICATIONS
    • CONCLUSIONS
    • Footnotes
    • References
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • Application of 7T MRS to High-Grade Gliomas
  • Assessing the Utility of Low Resolution Brain Imaging: Treatment of Infant Hydrocephalus
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • Diagnostic Neuroradiology of Monoclonal Antibodies
  • Clinical Outcomes After Chiari I Decompression
  • Segmentation of Brain Metastases with BLAST
Show more Adult Brain

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire