Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Research ArticleAdult Brain
Open Access

Deep Transfer Learning and Radiomics Feature Prediction of Survival of Patients with High-Grade Gliomas

W. Han, L. Qin, C. Bay, X. Chen, K.-H. Yu, N. Miskin, A. Li, X. Xu and G. Young
American Journal of Neuroradiology January 2020, 41 (1) 40-48; DOI: https://doi.org/10.3174/ajnr.A6365
W. Han
aFrom the Department of Radiology (W.H., C.B., X.C., N.M., A.L., X.X., G.Y.), Brigham and Women’s Hospital, Boston, Massachusetts
cHarvard Medical School (W.H., L.Q., C.B., K.-H.Y., N.M., X.X., G.Y.), Boston, Massachusetts
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for W. Han
L. Qin
bDepartment of Imaging (L.Q., G.Y.), Dana-Farber Cancer Institute, Boston, Massachusetts
cHarvard Medical School (W.H., L.Q., C.B., K.-H.Y., N.M., X.X., G.Y.), Boston, Massachusetts
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for L. Qin
C. Bay
aFrom the Department of Radiology (W.H., C.B., X.C., N.M., A.L., X.X., G.Y.), Brigham and Women’s Hospital, Boston, Massachusetts
cHarvard Medical School (W.H., L.Q., C.B., K.-H.Y., N.M., X.X., G.Y.), Boston, Massachusetts
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for C. Bay
X. Chen
aFrom the Department of Radiology (W.H., C.B., X.C., N.M., A.L., X.X., G.Y.), Brigham and Women’s Hospital, Boston, Massachusetts
dDepartment of Radiology (X.C.), Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for X. Chen
K.-H. Yu
cHarvard Medical School (W.H., L.Q., C.B., K.-H.Y., N.M., X.X., G.Y.), Boston, Massachusetts
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for K.-H. Yu
N. Miskin
aFrom the Department of Radiology (W.H., C.B., X.C., N.M., A.L., X.X., G.Y.), Brigham and Women’s Hospital, Boston, Massachusetts
cHarvard Medical School (W.H., L.Q., C.B., K.-H.Y., N.M., X.X., G.Y.), Boston, Massachusetts
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for N. Miskin
A. Li
aFrom the Department of Radiology (W.H., C.B., X.C., N.M., A.L., X.X., G.Y.), Brigham and Women’s Hospital, Boston, Massachusetts
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for A. Li
X. Xu
aFrom the Department of Radiology (W.H., C.B., X.C., N.M., A.L., X.X., G.Y.), Brigham and Women’s Hospital, Boston, Massachusetts
cHarvard Medical School (W.H., L.Q., C.B., K.-H.Y., N.M., X.X., G.Y.), Boston, Massachusetts
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for X. Xu
G. Young
aFrom the Department of Radiology (W.H., C.B., X.C., N.M., A.L., X.X., G.Y.), Brigham and Women’s Hospital, Boston, Massachusetts
bDepartment of Imaging (L.Q., G.Y.), Dana-Farber Cancer Institute, Boston, Massachusetts
cHarvard Medical School (W.H., L.Q., C.B., K.-H.Y., N.M., X.X., G.Y.), Boston, Massachusetts
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for G. Young
  • Article
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Pope WB,
    2. Sayre J,
    3. Perlina A, et al
    . MR imaging correlates of survival in patients with high-grade gliomas. AJNR Am J Neuroradiol 2005;26:2466–74 pmid:16286386
    Abstract/FREE Full Text
  2. 2.↵
    1. Zhou M,
    2. Scott J,
    3. Chaudhury B, et al
    . Radiomics in brain tumor: image assessment, quantitative feature descriptors, and machine-learning approaches. AJNR Am J Neuroradiol 2018;39:208–16 doi:10.3174/ajnr.A5391 pmid:28982791
    Abstract/FREE Full Text
  3. 3.↵
    1. Vallieres M,
    2. Freeman CR,
    3. Skamene SR, et al
    . A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys Med Biol 2015;60:5471–96 doi:10.1088/0031-9155/60/14/5471 pmid:26119045
    CrossRefPubMed
  4. 4.↵
    1. Aerts HJ,
    2. Velazquez ER,
    3. Leijenaar RT, et al
    . Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 2014;5:4006 doi:10.1038/ncomms5006 pmid:24892406
    CrossRefPubMed
  5. 5.↵
    1. Qu J,
    2. Qin L,
    3. Cheng S, et al
    . Residual low ADC and high FA at the resection margin correlate with poor chemoradiation response and overall survival in high-grade glioma patients. Eur J Radiol 2016;85:657–64 doi:10.1016/j.ejrad.2015.12.026 pmid:26860681
    CrossRefPubMed
  6. 6.↵
    1. Qin L,
    2. Li A,
    3. Qu J, et al
    . Normalization of ADC does not improve correlation with overall survival in patients with high-grade glioma (HGG). J Neurooncol 2018;137:313–19 doi:10.1007/s11060-017-2719-y pmid:29383647
    CrossRefPubMed
  7. 7.↵
    1. Akkus Z,
    2. Galimzianova A,
    3. Hoogi A, et al
    . Deep learning for brain MRI segmentation: state of the art and future directions. J Digit Imaging 2017;30:449–59 doi:10.1007/s10278-017-9983-4 pmid:28577131
    CrossRefPubMed
  8. 8.↵
    1. Zhou X,
    2. Takayama R,
    3. Wang S, et al
    . Deep learning of the sectional appearances of 3D CT images for anatomical structure segmentation based on an FCN voting method. Med Phys 2017;44:5221–33 doi:10.1002/mp.12480 pmid:28730602
    CrossRefPubMed
  9. 9.↵
    1. Chmelik J,
    2. Jakubicek R,
    3. Walek P, et al
    . Deep convolutional neural network-based segmentation and classification of difficult to define metastatic spinal lesions in 3D CT data. Med Image Anal 2018;49:76–88 doi:10.1016/j.media.2018.07.008 pmid:30114549
    CrossRefPubMed
  10. 10.↵
    1. Acharya UR,
    2. Oh SL,
    3. Hagiwara Y, et al
    . A deep convolutional neural network model to classify heartbeats. Comput Biol Med 2017;89:389–96 doi:10.1016/j.compbiomed.2017.08.022 pmid:28869899
    CrossRefPubMed
  11. 11.↵
    1. Burlina P,
    2. Pacheco KD,
    3. Joshi N, et al
    . Comparing humans and deep learning performance for grading AMD: a study in using universal deep features and transfer learning for automated AMD analysis. Comput Biol Med 2017;82:80–86 doi:10.1016/j.compbiomed.2017.01.018 pmid:28167406
    CrossRefPubMed
  12. 12.↵
    1. Lao J,
    2. Chen Y,
    3. Li ZC, et al
    . A deep learning-based radiomics model for prediction of survival in glioblastoma multiforme. Sci Rep 2017;7:1035 doi:10.1038/s41598-017-10649-8 pmid:28871110
    CrossRefPubMed
  13. 13.↵
    1. Nie D,
    2. Zhang H,
    3. Adeli E, et al
    . 3D deep learning for multi-modal imaging-guided survival time prediction of brain tumor patients. Med Image Comput Comput Assist Interv 2016;9901:212–20 doi:10.1007/978-3-319-46723-8_25 pmid:28149967
    CrossRefPubMed
  14. 14.↵
    1. Paul R,
    2. Hawkins SH,
    3. Balagurunathan Y, et al
    . Deep feature transfer learning in combination with traditional features predicts survival among patients with lung adenocarcinoma. Tomography 2016;2:388–95 doi:10.18383/j.tom.2016.00211 pmid:28066809
    CrossRefPubMed
  15. 15.↵
    1. Zhen X,
    2. Chen J,
    3. Zhong Z, et al
    . Deep convolutional neural network with transfer learning for rectum toxicity prediction in cervical cancer radiotherapy: a feasibility study. Phys Med Biol 2017;62:8246–63 doi:10.1088/1361-6560/aa8d09 pmid:28914611
    CrossRefPubMed
  16. 16.↵
    1. Collewet G,
    2. Strzelecki M,
    3. Mariette F
    . Influence of MRI acquisition protocols and image intensity normalization methods on texture classification. Magn Reson Imaging 2004;22:81–91 doi:10.1016/j.mri.2003.09.001 pmid:14972397
    CrossRefPubMed
  17. 17.↵
    1. Gibbs P,
    2. Turnbull LW
    . Textural analysis of contrast-enhanced MR images of the breast. Magn Reson Med 2003;50:92–98 doi:10.1002/mrm.10496 pmid:12815683
    CrossRefPubMed
  18. 18.↵
    1. Simonyan K,
    2. Zisseman A
    . Very deep convolutional networks for large-scale image recognition. Computer Vision and Pattern Recognition 2014;arXiv:1409.1556
  19. 19.↵
    1. Krizhevsky A,
    2. Sutskever I,
    3. Hinton GE
    . ImageNet classification with deep convolutional neural networks. J Commun. ACM 2017;60:84–90
  20. 20.↵
    1. Simon N,
    2. Friedman J,
    3. Hastie T, et al
    . Regularization paths for Cox’s proportional hazards model via coordinate descent. J Stat Softw 2011;39:1–13 pmid:21572908, 27065756
    CrossRefPubMedWeb of Science
  21. 21.↵
    1. Feinstein AR
    . Clinical Epidemiology: The Architecture of Clinical Research. Philadelphia: W.B. Saunders; 1985:xii
  22. 22.↵
    1. Paul R,
    2. Hawkins SH,
    3. Hall LO, et al
    . Combining deep neural network and traditional image features to improve survival prediction accuracy for lung cancer patients from diagnostic CT. In: Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, Budapest, Hungary. October 9–12, 2016 doi:10.1109/SMC.2016.7844626
  23. 23.↵
    1. Ahmed KB,
    2. Hall LO,
    3. Goldgof DB, et al
    . Fine-tuning convolutional deep features for MRI based brain tumor classification. In: Proceedings of Medical Imaging 2017: Computer-Aided Diagnosis, Orlando, Florida. February 11–16, 2017
  24. 24.↵
    1. Choi JY,
    2. Yoo TK,
    3. Seo JG, et al
    . Multi-categorical deep learning neural network to classify retinal images: a pilot study employing small database. PLoS One 2017;12:e0187336 doi:10.1371/journal.pone.0187336 pmid:29095872
    CrossRefPubMed
  25. 25.↵
    1. Kaiming H,
    2. Zhang X,
    3. Shaoqing R,
    4. Jian S
    . Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Navada. June 26 to July 1, 2016
  26. 26.↵
    1. Parmar C,
    2. Grossmann P,
    3. Bussink J, et al
    . Machine learning methods for quantitative radiomic biomarkers. Sci Rep 2015;5:13087 doi:10.1038/srep13087 pmid:26278466
    CrossRefPubMed
  27. 27.↵
    1. Yin P,
    2. Mao N,
    3. Zhao C, et al
    . Comparison of radiomics machine-learning classifiers and feature selection for differentiation of sacral chordoma and sacral giant cell tumour based on 3D computed tomography features. Eur Radiol 2019;29:1841–47 doi:10.1007/s00330-018-5730-6 pmid:30280245
    CrossRefPubMed
  28. 28.↵
    1. de Carvalho Filho AO,
    2. Silva AC,
    3. de Paiva AC, et al
    . Lung-nodule classification based on computed tomography using taxonomic diversity indexes and an SVM. J Signal Process Syst 2017;87:179–96 doi:10.1007/s11265-016-1134-5
    CrossRef
  29. 29.↵
    1. Yu KH,
    2. Zhang C,
    3. Berry GJ, et al
    . Predicting non-small cell lung cancer prognosis by fully automated microscopic pathology image features. Nat Commun 2016;7:12474 doi:10.1038/ncomms12474 pmid:27527408
    CrossRefPubMed
  30. 30.↵
    1. Cha S
    . CNS tumors: monitoring therapeutic response and outcome prediction. Top Magn Reson Imaging 2006;17:63–68 doi:10.1097/RMR.0b013e31802ee598 pmid:17198223
    CrossRefPubMed
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 41 (1)
American Journal of Neuroradiology
Vol. 41, Issue 1
1 Jan 2020
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Deep Transfer Learning and Radiomics Feature Prediction of Survival of Patients with High-Grade Gliomas
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
W. Han, L. Qin, C. Bay, X. Chen, K.-H. Yu, N. Miskin, A. Li, X. Xu, G. Young
Deep Transfer Learning and Radiomics Feature Prediction of Survival of Patients with High-Grade Gliomas
American Journal of Neuroradiology Jan 2020, 41 (1) 40-48; DOI: 10.3174/ajnr.A6365

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Deep Transfer Learning and Radiomics Feature Prediction of Survival of Patients with High-Grade Gliomas
W. Han, L. Qin, C. Bay, X. Chen, K.-H. Yu, N. Miskin, A. Li, X. Xu, G. Young
American Journal of Neuroradiology Jan 2020, 41 (1) 40-48; DOI: 10.3174/ajnr.A6365
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Adaptive Transfer Learning for Time-to-Event Modeling with Applications in Disease Risk Assessment
  • Deep Transfer Learning-based COVID-19 prediction using Chest X-rays
  • Artificial Intelligence in Neuroradiology: Current Status and Future Directions
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

Adult Brain

  • Diagnostic Neuroradiology of Monoclonal Antibodies
  • Clinical Outcomes After Chiari I Decompression
  • Segmentation of Brain Metastases with BLAST
Show more Adult Brain

Functional

  • Kurtosis and Epileptogenic Tubers: A Pilot Study
  • Glutaric Aciduria Type 1: DK vs. Conventional MRI
  • Perifocal Edema in Meningiomas&Brain Connectivity
Show more Functional

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire