Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • AJNR Case Collection
    • Case of the Week Archive
    • Classic Case Archive
    • Case of the Month Archive
  • Special Collections
    • Spinal CSF Leak Articles (Jan 2020-June 2024)
    • 2024 AJNR Journal Awards
    • Most Impactful AJNR Articles
  • Multimedia
    • AJNR Podcast
    • AJNR Scantastics
    • Video Articles
  • For Authors
    • Submit a Manuscript
    • Author Policies
    • Fast publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Manuscript Submission Guidelines
    • Imaging Protocol Submission
    • Submit a Case for the Case Collection
  • About Us
    • About AJNR
    • Editorial Board
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Other Publications
    • ajnr

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • AJNR Case Collection
    • Case of the Week Archive
    • Classic Case Archive
    • Case of the Month Archive
  • Special Collections
    • Spinal CSF Leak Articles (Jan 2020-June 2024)
    • 2024 AJNR Journal Awards
    • Most Impactful AJNR Articles
  • Multimedia
    • AJNR Podcast
    • AJNR Scantastics
    • Video Articles
  • For Authors
    • Submit a Manuscript
    • Author Policies
    • Fast publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Manuscript Submission Guidelines
    • Imaging Protocol Submission
    • Submit a Case for the Case Collection
  • About Us
    • About AJNR
    • Editorial Board
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

Welcome to the new AJNR, Updated Hall of Fame, and more. Read the full announcements.


AJNR is seeking candidates for the position of Associate Section Editor, AJNR Case Collection. Read the full announcement.

 

Research ArticleAdult Brain

Metal Artifact Reduction in Head CT Performed for Patients with Deep Brain Stimulation Devices: Effectiveness of a Single-Energy Metal Artifact Reduction Algorithm

Y. Nagayama, S. Tanoue, S. Oda, D. Sakabe, T. Emoto, M. Kidoh, H. Uetani, A. Sasao, T. Nakaura, O. Ikeda, K. Yamada and Y. Yamashita
American Journal of Neuroradiology February 2020, 41 (2) 231-237; DOI: https://doi.org/10.3174/ajnr.A6375
Y. Nagayama
aFrom the Department of Diagnostic Radiology (Y.N., S.O., M.K., H.U., A.S., T.N., O.I., Y.Y.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Y. Nagayama
S. Tanoue
cDiagnostic Radiology (S.T.), Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for S. Tanoue
S. Oda
aFrom the Department of Diagnostic Radiology (Y.N., S.O., M.K., H.U., A.S., T.N., O.I., Y.Y.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for S. Oda
D. Sakabe
dDepartment of Central Radiology (D.S., T.E.), Kumamoto University Hospital, Kumamoto, Japan.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for D. Sakabe
T. Emoto
dDepartment of Central Radiology (D.S., T.E.), Kumamoto University Hospital, Kumamoto, Japan.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for T. Emoto
M. Kidoh
aFrom the Department of Diagnostic Radiology (Y.N., S.O., M.K., H.U., A.S., T.N., O.I., Y.Y.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for M. Kidoh
H. Uetani
aFrom the Department of Diagnostic Radiology (Y.N., S.O., M.K., H.U., A.S., T.N., O.I., Y.Y.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for H. Uetani
A. Sasao
aFrom the Department of Diagnostic Radiology (Y.N., S.O., M.K., H.U., A.S., T.N., O.I., Y.Y.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for A. Sasao
T. Nakaura
aFrom the Department of Diagnostic Radiology (Y.N., S.O., M.K., H.U., A.S., T.N., O.I., Y.Y.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for T. Nakaura
O. Ikeda
aFrom the Department of Diagnostic Radiology (Y.N., S.O., M.K., H.U., A.S., T.N., O.I., Y.Y.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for O. Ikeda
K. Yamada
bGraduate School of Medical Sciences, and Departments of Neurosurgery (K.Y.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for K. Yamada
Y. Yamashita
aFrom the Department of Diagnostic Radiology (Y.N., S.O., M.K., H.U., A.S., T.N., O.I., Y.Y.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Y. Yamashita
  • Article
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Fasano A,
    2. Lozano AM
    . Deep brain stimulation for movement disorders: 2015 and beyond. Curr Opin Neurol 2015;28:423–36 doi:10.1097/WCO.0000000000000226 pmid:26110808
    CrossRefPubMed
  2. 2.↵
    1. Holtzheimer PE,
    2. Mayberg HS
    . Deep brain stimulation for psychiatric disorders. Annu Rev Neurosci 2011;34:289–307 doi:10.1146/annurev-neuro-061010-113638 pmid:21692660
    CrossRefPubMedWeb of Science
  3. 3.↵
    1. Sitz A,
    2. Hoevels M,
    3. Hellerbach A, et al
    . Determining the orientation angle of directional leads for deep brain stimulation using computed tomography and digital x-ray imaging: a phantom study. Med Phys 2017;44:4463–73 doi:10.1002/mp.12424 pmid:28639387
    CrossRefPubMed
  4. 4.↵
    1. Barrett JF,
    2. Keat N
    . Artifacts in CT: recognition and avoidance. Radiographics 2004;24:1679–91 doi:10.1148/rg.246045065 pmid:15537976
    CrossRefPubMedWeb of Science
  5. 5.↵
    1. Han SC,
    2. Chung YE,
    3. Lee YH, et al
    . Metal artifact reduction software used with abdominopelvic dual-energy CT of patients with metal hip prostheses: assessment of image quality and clinical feasibility. AJR Am J Roentgenol 2014;203:788–95 doi:10.2214/AJR.13.10980 pmid:25247944
    CrossRefPubMed
  6. 6.↵
    1. Katsura M,
    2. Sato J,
    3. Akahane M, et al
    . Current and novel techniques for metal artifact reduction at CT: practical guide for radiologists. Radiographics 2018;38:450–61 doi:10.1148/rg.2018170102 pmid:29528826
    CrossRefPubMed
  7. 7.↵
    1. Gjesteby L,
    2. de Man BD,
    3. Jin Y, et al
    . Metal artifact reduction in CT: where are we after four decades? IEEE Access 2016;4:5826–49. https://ieeexplore.ieee.org/document/7565564. Accessed April 3, 2019
    CrossRef
  8. 8.↵
    1. Nagayama Y,
    2. Nakaura T,
    3. Tsuji A, et al
    . Cerebral bone subtraction CT angiography using 80 kVp and sinogram-affirmed iterative reconstruction: contrast medium and radiation dose reduction with improvement of image quality. Neuroradiology 2017;59:127–34 doi:10.1007/s00234-016-1776-9 pmid:28050639
    CrossRefPubMed
  9. 9.↵
    1. Andersson KM,
    2. Norrman E,
    3. Geijer H, et al
    . Visual grading evaluation of commercially available metal artefact reduction techniques in hip prosthesis computed tomography. Br J Radiol 2016;89:20150993 doi:10.1259/bjr.20150993 pmid:27123700
    CrossRefPubMed
  10. 10.↵
    1. Große Hokamp N,
    2. Hellerbach A,
    3. Gierich A, et al
    . Reduction of artifacts caused by deep brain stimulating electrodes in cranial computed tomography imaging by means of virtual monoenergetic images, metal artifact reduction algorithms, and their combination. Invest Radiol 2018;53:424–31 doi:10.1097/RLI.0000000000000460 pmid:29543691
    CrossRefPubMed
  11. 11.↵
    1. Chang YB,
    2. Xu D,
    3. Zamyatin AA
    . Metal artifact reduction algorithm for single energy and dual-energy CT scans. In: Proceedings of the 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC), Anaheim, California. October 27 to November 3, 2012:3426–29
  12. 12.↵
    1. Yasaka K,
    2. Kamiya K,
    3. Irie R, et al
    . Metal artefact reduction for patients with metallic dental fillings in helical neck computed tomography: comparison of adaptive iterative dose reduction 3D (AIDR 3D), forward-projected model-based iterative reconstruction solution (FIRST) and AIDR 3D with single-energy metal artefact reduction (SEMAR). Dentomaxillofac Radiol 2016;45:20160114 doi:10.1259/dmfr.20160114 pmid:27268082
    CrossRefPubMed
  13. 13.↵
    1. Kidoh M,
    2. Utsunomiya D,
    3. Ikeda O, et al
    . Reduction of metallic coil artefacts in computed tomography body imaging: effects of a new single-energy metal artefact reduction algorithm. Eur Radiol 2016;26:1378–86 doi:10.1007/s00330-015-3950-6 pmid:26271621
    CrossRefPubMed
  14. 14.↵
    1. Pan YN,
    2. Chen G,
    3. Li AJ, et al
    . Reduction of metallic artifacts of the post-treatment intracranial aneurysms: effects of single energy metal artifact reduction algorithm. Clin Neuroradiol 2019;29:277–84 doi:10.1007/s00062-017-0644-2
    CrossRefPubMed
  15. 15.↵
    1. Katsura M,
    2. Sato J,
    3. Akahane M, et al
    . Single-energy metal artifact reduction technique for reducing metallic coil artifacts on post-interventional cerebral CT and CT angiography. Neuroradiology 2018;60:1141–50 doi:10.1007/s00234-018-2081-6 pmid:30143820
    CrossRefPubMed
  16. 16.↵
    1. Dong Y,
    2. Shi AJ,
    3. Wu JL, et al
    . Metal artifact reduction using virtual monochromatic images for patients with pedicle screws implants on CT. Eur Spine J 2016;25:1754–63 doi:10.1007/s00586-015-4053-4 pmid:26070548
    CrossRefPubMed
  17. 17.↵
    1. Kidoh M,
    2. Utsunomiya D,
    3. Oda S, et al
    . CT venography after knee replacement surgery: comparison of dual-energy CT-based monochromatic imaging and single-energy metal artifact reduction techniques on a 320-row CT scanner. Acta Radiol Open 2017;6:2058460117693463 doi:10.1177/2058460117693463 pmid:28321330
    CrossRefPubMed
  18. 18.↵
    1. Andersson KM,
    2. Nowik P,
    3. Persliden J, et al
    . Metal artefact reduction in CT imaging of hip prostheses-an evaluation of commercial techniques provided by four vendors. Br J Radiol 2015;88:20140473 doi:10.1259/bjr.20140473 pmid:26110201
    CrossRefPubMed
  19. 19.↵
    1. Pomerantz SR,
    2. Kamalian S,
    3. Zhang D, et al
    . Virtual monochromatic reconstruction of dual-energy unenhanced head CT at 65-75 keV maximizes image quality compared with conventional polychromatic CT. Radiology 2013;266:318–25 doi:10.1148/radiol.12111604 pmid:23074259
    CrossRefPubMed
  20. 20.
    1. Zhao XM,
    2. Wang M,
    3. Wu RZ, et al
    . Dual-layer spectral detector CT monoenergetic reconstruction improves image quality of non-contrast cerebral CT as compared with conventional single energy CT. Eur J Radiol 2018;103:131–38 doi:10.1016/j.ejrad.2018.04.015 pmid:29803379
    CrossRefPubMed
  21. 21.↵
    1. Lennartz S,
    2. Laukamp KR,
    3. Neuhaus V, et al
    . Dual-layer detector CT of the head: initial experience in visualization of intracranial hemorrhage and hypodense brain lesions using virtual monoenergetic images. Eur J Radiol 2018;108:177–83 doi:10.1016/j.ejrad.2018.09.010 pmid:30396652
    CrossRefPubMed
  22. 22.↵
    1. Nagayama Y,
    2. Nakaura T,
    3. Tsuji A, et al
    . Radiation dose reduction using 100-kVp and a sinogram-affirmed iterative reconstruction algorithm in adolescent head CT: impact on grey-white matter contrast and image noise. Eur Radiol 2017;27:2717–25 doi:10.1007/s00330-016-4679-6 pmid:27966043
    CrossRefPubMed
  23. 23.↵
    1. Aissa J,
    2. Boos J,
    3. Schleich C, et al
    . Metal artifact reduction in computed tomography after deep brain stimulation electrode placement using iterative reconstructions. Invest Radiol 2017;52:18–22 doi:10.1097/RLI.0000000000000296 pmid:27309775
    CrossRefPubMed
  24. 24.↵
    1. Bolstad K,
    2. Flatabo S,
    3. Aadnevik D, et al
    . Metal artifact reduction in CT, a phantom study: subjective and objective evaluation of four commercial metal artifact reduction algorithms when used on three different orthopedic metal implants. Acta Radiol 2018;59:1110–18 doi:10.1177/0284185117751278 pmid:29310445
    CrossRefPubMed
  25. 25.↵
    1. Chou R,
    2. Li JH,
    3. Ying LK, et al
    . Quantitative assessment of three vendor's metal artifact reduction techniques for CT imaging using a customized phantom. Comput Assist Surg (Abingdon) 2019;24:34–42 doi:10.1080/24699322.2019.1649075 pmid:31502481
    CrossRefPubMed
  26. 26.↵
    1. Golestanirad L,
    2. Kirsch J,
    3. Bonmassar G, et al
    . RF-induced heating in tissue near bilateral DBS implants during MRI at 1.5T and 3T: the role of surgical lead management. Neuroimage 2019;184:566–76 doi:10.1016/j.neuroimage.2018.09.034 pmid:30243973
    CrossRefPubMed
  27. 27.↵
    1. Ghani MU,
    2. Karl WC
    . Deep learning based sinogram correction for metal artifact reduction. Electronic Imaging 2018;2018:4721–28 doi:10.2352/ISSN.2470-1173.2018.15.COIMG-472
    CrossRef
  28. 28.↵
    1. Zhang Y,
    2. Yu H
    . Convolutional neural network-based metal artifact reduction in x-ray computed tomography. IEEE Trans Med Imaging 2018;37:1370–81 doi:10.1109/TMI.2018.2823083 pmid:29870366
    CrossRefPubMed
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 41 (2)
American Journal of Neuroradiology
Vol. 41, Issue 2
1 Feb 2020
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Metal Artifact Reduction in Head CT Performed for Patients with Deep Brain Stimulation Devices: Effectiveness of a Single-Energy Metal Artifact Reduction Algorithm
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
Y. Nagayama, S. Tanoue, S. Oda, D. Sakabe, T. Emoto, M. Kidoh, H. Uetani, A. Sasao, T. Nakaura, O. Ikeda, K. Yamada, Y. Yamashita
Metal Artifact Reduction in Head CT Performed for Patients with Deep Brain Stimulation Devices: Effectiveness of a Single-Energy Metal Artifact Reduction Algorithm
American Journal of Neuroradiology Feb 2020, 41 (2) 231-237; DOI: 10.3174/ajnr.A6375

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Metal Artifact Reduction in Head CT Performed for Patients with Deep Brain Stimulation Devices: Effectiveness of a Single-Energy Metal Artifact Reduction Algorithm
Y. Nagayama, S. Tanoue, S. Oda, D. Sakabe, T. Emoto, M. Kidoh, H. Uetani, A. Sasao, T. Nakaura, O. Ikeda, K. Yamada, Y. Yamashita
American Journal of Neuroradiology Feb 2020, 41 (2) 231-237; DOI: 10.3174/ajnr.A6375
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • References
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Crossref (10)
  • Google Scholar

This article has been cited by the following articles in journals that are participating in Crossref Cited-by Linking.

  • Single-Energy Metal Artifact Reduction (SEMAR) in Ultra-High-Resolution CT Angiography of Patients with Intracranial Implants
    Abdullah Jabas, Mario Alberto Abello Mercado, Sebastian Altmann, Florian Ringel, Christian Booz, Andrea Kronfeld, Antoine P. Sanner, Marc A. Brockmann, Ahmed E. Othman
    Diagnostics 2023 13 4
  • Dual‐energy CT‐based stopping power prediction for dental materials in particle therapy
    Friderike K. Longarino, Christopher Herpel, Thomas Tessonnier, Stewart Mein, Benjamin Ackermann, Jürgen Debus, Franz Sebastian Schwindling, Wolfram Stiller, Andrea Mairani
    Journal of Applied Clinical Medical Physics 2023 24 8
  • Metal artefact reduction in the oral cavity using deep learning reconstruction algorithm in ultra-high-resolution computed tomography: a phantom study
    Yuki Sakai, Erina Kitamoto, Kazutoshi Okamura, Masato Tatsumi, Takashi Shirasaka, Ryoji Mikayama, Masatoshi Kondo, Hiroshi Hamasaki, Toyoyuki Kato, Kazunori Yoshiura
    Dentomaxillofacial Radiology 2021 50 7
  • Clinical Evaluation of an Innovative Metal-Artifact-Reduction Algorithm in FD-CT Angiography in Cerebral Aneurysms Treated by Endovascular Coiling or Surgical Clipping
    Felix Eisenhut, Manuel Alexander Schmidt, Alexander Kalik, Tobias Struffert, Julian Feulner, Sven-Martin Schlaffer, Michael Manhart, Arnd Doerfler, Stefan Lang
    Diagnostics 2022 12 5
  • A Novel and Simple Method Using Computed Tomography Streak Artifact to Determine the Orientation of Directional Deep Brain Stimulation Leads
    Islam Fayed, Mashaal Syed, Eric Gingold, Mahdi Alizadeh, Ashwini Sharan, Chengyuan Wu
    Neurosurgery 2023 93 5
  • Assessment of cardiac implantable electric device lead perforation using a metal artifact reduction algorithm in cardiac computed tomography
    Masafumi Kidoh, Seitaro Oda, Kengo Nakato, Daisuke Sakabe, Hisanori Kanazawa, Seiji Takashio, Takeshi Nakaura, Yasunori Nagayama, Akira Sasao, Masahiro Hatemura, Yoshinori Funama, Koichi Kaikita, Kenichi Tsujita, Osamu Ikeda, Minako Azuma, Toshinori Hirai
    European Journal of Radiology 2021 136
  • Improving the quality of computed tomography brain images in the presence of cochlear implant induced metal artefacts through the additional use of tissue mimicking materials alongside metal artefact reduction software
    F.M. Lenham, G.R. Iball
    Radiography 2024 30 3
  • Noise-related inaccuracies in the quantitative evaluation of CT artifacts
    Kazutaka Hoyoshi, Kazuhiro Sato, Noriyasu Homma, Issei Mori
    Radiological Physics and Technology 2025 18 1
  • Intraoperative cone-beam CT with metal artifact reduction for assessment of the electrode position and the intracranial structures during deep brain stimulation procedure
    Toshinari Kawasaki, Takayuki Kikuchi, Katharina Otani, Yuto Mitsuno, Yukihiro Yamao, Nobukatsu Sawamoto, Ryosuke Takahashi, Susumu Miyamoto
    Acta Neurochirurgica 2022 164 9
  • Investigation of the effectiveness of eight different metal artifact reduction algorithms in reducing extracorporeal metal artifacts: a phantom study using the Gumbel method
    Keiko Suzuki, Hiroe Muto
    Polish Journal of Medical Physics and Engineering 2024 30 4

More in this TOC Section

  • Diagnostic Neuroradiology of Monoclonal Antibodies
  • ML for Glioma Molecular Subtype Prediction
  • Segmentation of Brain Metastases with BLAST
Show more Adult Brain

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editors Choice
  • Fellow Journal Club
  • Letters to the Editor

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

Special Collections

  • Special Collections

Resources

  • News and Updates
  • Turn around Times
  • Submit a Manuscript
  • Author Policies
  • Manuscript Submission Guidelines
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Submit a Case
  • Become a Reviewer/Academy of Reviewers
  • Get Peer Review Credit from Publons

Multimedia

  • AJNR Podcast
  • AJNR SCANtastic
  • Video Articles

About Us

  • About AJNR
  • Editorial Board
  • Not an AJNR Subscriber? Join Now
  • Alerts
  • Feedback
  • Advertise with us
  • Librarian Resources
  • Permissions
  • Terms and Conditions

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire