Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Getting new auth cookie, if you see this message a lot, tell someone!
Review ArticleAdult Brain
Open Access

Artificial Intelligence in the Management of Intracranial Aneurysms: Current Status and Future Perspectives

Z. Shi, B. Hu, U.J. Schoepf, R.H. Savage, D.M. Dargis, C.W. Pan, X.L. Li, Q.Q. Ni, G.M. Lu and L.J. Zhang
American Journal of Neuroradiology March 2020, 41 (3) 373-379; DOI: https://doi.org/10.3174/ajnr.A6468
Z. Shi
aFrom the Department of Medical Imaging (Z.S., B.H., Q.Q.N., G.M.L., L.J.Z.), Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Z. Shi
B. Hu
aFrom the Department of Medical Imaging (Z.S., B.H., Q.Q.N., G.M.L., L.J.Z.), Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for B. Hu
U.J. Schoepf
bDivision of Cardiovascular Imaging (U.J.S., R.H.S., D.M.D.), Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, South Carolina
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for U.J. Schoepf
R.H. Savage
bDivision of Cardiovascular Imaging (U.J.S., R.H.S., D.M.D.), Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, South Carolina
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for R.H. Savage
D.M. Dargis
bDivision of Cardiovascular Imaging (U.J.S., R.H.S., D.M.D.), Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, South Carolina
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for D.M. Dargis
C.W. Pan
cDeepWise AI Lab (C.W.P., X.L.L.), Beijing, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for C.W. Pan
X.L. Li
cDeepWise AI Lab (C.W.P., X.L.L.), Beijing, China
dPeng Cheng Laboratory (X.L.L.), Vanke Cloud City Phase I, Nanshan District, Shenzhen, Guangdong, China.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for X.L. Li
Q.Q. Ni
aFrom the Department of Medical Imaging (Z.S., B.H., Q.Q.N., G.M.L., L.J.Z.), Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Q.Q. Ni
G.M. Lu
aFrom the Department of Medical Imaging (Z.S., B.H., Q.Q.N., G.M.L., L.J.Z.), Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for G.M. Lu
L.J. Zhang
aFrom the Department of Medical Imaging (Z.S., B.H., Q.Q.N., G.M.L., L.J.Z.), Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for L.J. Zhang
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Vlak MH,
    2. Algra A,
    3. Brandenburg R, et al
    . Prevalence of unruptured intracranial aneurysms, with emphasis on sex, age, comorbidity, country, and time period: a systematic review and meta-analysis. Lancet Neurol 2011;10:626–36 doi:10.1016/S1474-4422(11)70109-0 pmid:21641282
    CrossRefPubMedWeb of Science
  2. 2.↵
    1. Li MH,
    2. Chen SW,
    3. Li YD, et al
    . Prevalence of unruptured cerebral aneurysms in Chinese adults aged 35 to 75 years: a cross-sectional study. Ann Intern Med 2013;159:514–21 doi:10.7326/0003-4819-159-8-201310150-00004 pmid:24126645
    CrossRefPubMed
  3. 3.↵
    1. Boland GW,
    2. Guimaraes AS,
    3. Mueller PR
    . The radiologist’s conundrum: benefits and costs of increasing CT capacity and utilization. Eur Radiol 2009;19:9–11 doi:10.1007/s00330-008-1159-7 pmid:18766347
    CrossRefPubMedWeb of Science
  4. 4.↵
    1. McDonald RJ,
    2. Schwartz KM,
    3. Eckel LJ, et al
    . The effects of changes in utilization and technological advancements of cross sectional imaging on radiologist workload. Acad Radiol 2015;22:1191–98 doi:10.1016/j.acra.2015.05.007 pmid:26210525
    CrossRefPubMed
  5. 5.↵
    1. Morita A,
    2. Kirino T,
    3. Hashi K, et al
    ; UCAS Japan Investigators. The natural course of unruptured cerebral aneurysms in a Japanese cohort. N Engl J Med 2012;366:2474–82 doi:10.1056/NEJMoa1113260 pmid:22738097
    CrossRefPubMedWeb of Science
  6. 6.↵
    1. Naggara ON,
    2. Lecler A,
    3. Oppenheim C, et al
    . Endovascular treatment of intracranial unruptured aneurysms: a systematic review of the literature on safety with emphasis on subgroup analyses. Radiology 2012;263:828–35 doi:10.1148/radiol.12112114 pmid:22623696
    CrossRefPubMedWeb of Science
  7. 7.↵
    1. He J,
    2. Baxter SL,
    3. Xu J, et al
    . The practical implementation of artificial intelligence technologies in medicine. Nat Med 2019;25:30–36 doi:10.1038/s41591-018-0307-0 pmid:30617336
    CrossRefPubMed
  8. 8.↵
    1. Zhou ZH
    . A brief introduction to weakly supervised learning. Natl Sci Rev 2018;5:45–53 doi:10.1093/nsr/nwx106
    CrossRef
  9. 9.↵
    1. LeCun Y,
    2. Bengio Y,
    3. Hinton G
    . Deep learning. Nature 2015;521:436–44 doi:10.1038/nature14539 pmid:26017442
    CrossRefPubMed
  10. 10.↵
    1. Dey D,
    2. Slomka PJ,
    3. Leeson P, et al
    . Artificial intelligence in cardiovascular imaging: JACC state-of-the-art review. J Am Coll Cardiol 2019;73:1317–35 doi:10.1016/j.jacc.2018.12.054 pmid:30898208
    FREE Full Text
  11. 11.↵
    1. Paliwal N,
    2. Jaiswal P,
    3. Tutino VM, et al
    . Outcome prediction of intracranial aneurysm treatment by flow diverters using machine learning. Neurosurg Focus 2018;45:E7 doi:10.3171/2018.8.FOCUS18332 pmid:30453461
    CrossRefPubMed
  12. 12.↵
    1. Varble N,
    2. Tutino VM,
    3. Yu J, et al
    . Shared and distinct rupture discriminants of small and large intracranial aneurysms. Stroke 2018;49:856–64 doi:10.1161/STROKEAHA.117.019929 pmid:29535267
    Abstract/FREE Full Text
  13. 13.↵
    1. Litjens G,
    2. Kooi T,
    3. Bejnordi BE, et al
    . A survey on deep learning in medical image analysis. Med Image Anal 2017;42:60–88 doi:10.1016/j.media.2017.07.005 pmid:28778026
    CrossRefPubMed
  14. 14.↵
    1. Bechan RS,
    2. van Rooij SB,
    3. Sprengers ME, et al
    . CT angiography versus 3D rotational angiography in patients with subarachnoid hemorrhage. Neuroradiology 2015;57:1239–46 doi:10.1007/s00234-015-1590-9 pmid:26341107
    CrossRefPubMed
  15. 15.↵
    1. Schalekamp S,
    2. van Ginneken B,
    3. Koedam E, et al
    . Computer-aided detection improves detection of pulmonary nodules in chest radiographs beyond the support by bone-suppressed images. Radiology 2014;272:252–61 doi:10.1148/radiol.14131315 pmid:24635675
    CrossRefPubMed
  16. 16.↵
    1. De Fauw J,
    2. Ledsam JR,
    3. Romera-Paredes B, et al
    . Clinically applicable deep learning for diagnosis and referral in retinal disease. Nat Med 2018;24:1342–50 doi:10.1038/s41591-018-0107-6 pmid:30104768
    CrossRefPubMed
  17. 17.↵
    1. Yang X,
    2. Blezek DJ,
    3. Cheng LTE, et al
    . Computer-aided detection of intracranial aneurysms in MR angiography. J Digit Imaging 2011;24:86–95 doi:10.1007/s10278-009-9254-0 pmid:19937083
    CrossRefPubMed
  18. 18.↵
    1. Arimura H,
    2. Li Q,
    3. Korogi Y, et al
    . Automated computerized scheme for detection of unruptured intracranial aneurysms in three dimensional magnetic resonance angiography. Acad Radiol 2004;11:1093–1104 doi:10.1016/j.acra.2004.07.011 pmid:15530802
    CrossRefPubMed
  19. 19.↵
    1. Hirai T,
    2. Korogi Y,
    3. Arimura H, et al
    . Intracranial aneurysms at MR angiography: effect of computer-aided diagnosis on radiologists’ detection performance. Radiology 2005;237:605–10 doi:10.1148/radiol.2372041734 pmid:16179404
    CrossRefPubMedWeb of Science
  20. 20.↵
    1. Kakeda S,
    2. Korogi Y,
    3. Arimura H, et al
    . Diagnostic accuracy and reading time to detect intracranial aneurysms on MR angiography using a computer-aided diagnosis system. AJR Am J Roentgenol 2008;190:459–65 doi:10.2214/AJR.07.2642 pmid:18212233
    CrossRefPubMed
  21. 21.↵
    1. Jin Z,
    2. Arimura H,
    3. Kakeda S, et al
    . An ellipsoid convex enhancement filter for detection of asymptomatic intracranial aneurysm candidates in CAD frameworks. Med Phys 2016;43:951–60 doi:10.1118/1.4940349 pmid:26843255
    CrossRefPubMed
  22. 22.↵
    1. Nakao T,
    2. Hanaoka S,
    3. Nomura Y, et al
    . Deep neural network-based computer-assisted detection of cerebral aneurysms in MR angiography. J Magn Reson Imaging 2018;47:948–53 doi:10.1002/jmri.25842 pmid:28836310
    CrossRefPubMed
  23. 23.↵
    1. Stember JN,
    2. Chang P,
    3. Stember DM, et al
    . Convolutional neural networks for the detection and measurement of cerebral aneurysms on magnetic resonance angiography. J Digit Imaging 2019;32:808–15 doi:10.1007/s10278-018-0162-z pmid:30511281
    CrossRefPubMed
  24. 24.↵
    1. Sichtermann T,
    2. Faron A,
    3. Sijben R, et al
    . Deep learning–based detection of intracranial aneurysms in 3D TOF-MRA. AJNR Am J Neuroradiol 2019;40:25–32 doi:10.3174/ajnr.A5911 pmid:30573461
    Abstract/FREE Full Text
  25. 25.↵
    1. Ueda D,
    2. Yamamoto A,
    3. Nishimori M, et al
    . Deep learning for MR angiography: Automated detection of cerebral aneurysms. Radiology 2019;290:187–94 doi:10.1148/radiol.2018180901 pmid:30351253
    CrossRefPubMed
  26. 26.↵
    1. Park A,
    2. Chute C,
    3. Rajpurkar P, et al
    . Deep learning–assisted diagnosis of cerebral aneurysms using the HeadXNet model. JAMA Netw Open 2019;2:e195600 doi:10.1001/jamanetworkopen.2019.5600 pmid:31173130
    CrossRefPubMed
  27. 27.↵
    1. Miki S,
    2. Hayashi N,
    3. Masutani Y, et al
    . Computer-assisted detection of cerebral aneurysms in MR angiography in a routine image-reading environment: effects on diagnosis by radiologists. AJNR Am J Neuroradiol 2016;37:1038–43 doi:10.3174/ajnr.A4671 pmid:26892988
    Abstract/FREE Full Text
  28. 28.↵
    1. Maldaner N,
    2. Stienen MN,
    3. Bijlenga P, et al
    . Interrater agreement in the radiologic characterization of ruptured intracranial aneurysms based on computed tomography angiography. World Neurosurg 2017;103:876–82 doi:10.1016/j.wneu.2017.04.131 pmid:28461281
    CrossRefPubMed
  29. 29.↵
    1. Suh SH,
    2. Cloft HJ,
    3. Huston J, et al
    . Interobserver variability of aneurysm morphology: discrimination of the daughter sac. J Neurointerv Surg 2016;8:38–41 doi:10.1136/neurintsurg-2014-011471 pmid:25385747
    Abstract/FREE Full Text
  30. 30.↵
    1. Larrabide I,
    2. Cruz Villa-Uriol M,
    3. Cárdenes R, et al
    . Three-dimensional morphological analysis of intracranial aneurysms: a fully automated method for aneurysm sac isolation and quantification. Med Phys 2011;38:2439–49 doi:10.1118/1.3575417 pmid:21776779
    CrossRefPubMed
  31. 31.↵
    1. Piccinelli M,
    2. Steinman DA,
    3. Hoi Y, et al
    . Automatic neck plane detection and 3D geometric characterization of aneurysmal sacs. Ann Biomed Eng 2012;40:2188–2211 doi:10.1007/s10439-012-0577-5 pmid:22532324
    CrossRefPubMed
  32. 32.↵
    1. Xiang J,
    2. Antiga L,
    3. Varble N, et al
    . AView: An image-based clinical computational tool for intracranial aneurysm flow visualization and clinical management. Ann Biomed Eng 2016;44:1085–96 doi:10.1007/s10439-015-1363-y pmid:26101034
    CrossRefPubMed
  33. 33.↵
    1. Rajabzadeh-Oghaz H,
    2. Varble N,
    3. Davies JM, et al
    . Computer-assisted adjuncts for aneurysmal morphology assessment: toward more precise and accurate approaches. Proc SPIE Int Soc Opt Eng 2017;10134 doi:10.1117/12.2255553 pmid:28867867
    CrossRefPubMed
  34. 34.↵
    1. Rajabzadeh-Oghaz H,
    2. Varble N,
    3. Shallwani H, et al
    . Computer-assisted 3D morphology evaluation of intracranial aneurysms. World Neurosurg 2018;119:e541–50 doi:10.1016/j.wneu.2018.07.208 pmid:30075262
    CrossRefPubMed
  35. 35.↵
    1. Can A,
    2. Du R
    . Association of hemodynamic factors with intracranial aneurysm formation and rupture: systematic review and meta-analysis. Neurosurgery 2016;78:510–20 doi:10.1227/NEU.0000000000001083 pmid:26516819
    CrossRefPubMed
  36. 36.↵
    1. Seo JH,
    2. Eslami P,
    3. Caplan J, et al
    . A highly automated computational method for modeling of intracranial aneurysm hemodynamics. Front Physiol 2018;9:681 doi:10.3389/fphys.2018.00681 pmid:29946264
    CrossRefPubMed
  37. 37.↵
    1. Cebral JR,
    2. Vazquez M,
    3. Sforza DM, et al
    . Analysis of hemodynamics and wall mechanics at sites of cerebral aneurysm rupture. J Neurointerv Surg 2015;7:530–36 doi:10.1136/neurintsurg-2014-011247 pmid:24827066
    Abstract/FREE Full Text
  38. 38.↵
    1. Liu J,
    2. Chen Y,
    3. Lan L, et al
    . Prediction of rupture risk in anterior communicating artery aneurysms with a feed-forward artificial neural network. Eur Radiology 2018;28:3268–75 doi:10.1007/s00330-017-5300-3 pmid:29476219
    CrossRefPubMed
  39. 39.↵
    1. Liu Q,
    2. Jiang P,
    3. Jiang Y, et al
    . Prediction of aneurysm stability using a machine learning model based on PyRadiomics-derived morphological features. Stroke 2019;50:2314–21 doi:10.1161/STROKEAHA.119.025777 pmid:31288671
    CrossRefPubMed
  40. 40.↵
    1. Detmer FJ,
    2. Lückehe D,
    3. Mut F, et al
    . Comparison of statistical learning approaches for cerebral aneurysm rupture assessment. Int J Comput Assist Radiology Surg 2019;15:141–50 doi:10.1007/s11548-019-02065-2 pmid:31485987
    CrossRefPubMed
  41. 41.↵
    1. Silva MA,
    2. Patel J,
    3. Kavouridis V, et al
    . Machine learning models can detect aneurysm rupture and identify clinical features associated with rupture. World Neurosurg 2019;131:e46–51 doi:10.1016/j.wneu.2019.06.231 pmid:31295616
    CrossRefPubMed
  42. 42.↵
    1. Dumont TM,
    2. Rughani AI,
    3. Tranmer BI
    . Prediction of symptomatic cerebral vasospasm after aneurysmal subarachnoid hemorrhage with an artificial neural network: feasibility and comparison with logistic regression models. World Neurosurg 2011;75:57–63 doi:10.1016/j.wneu.2010.07.007 pmid:21492664
    CrossRefPubMed
  43. 43.↵
    1. Adams HP Jr.,
    2. Kassell NF,
    3. Torner JC, et al
    . Predicting cerebral ischemia after aneurysmal subarachnoid hemorrhage: influences of clinical condition, CT results, and antifibrinolytic therapy: a report of the cooperative aneurysm study. Neurology 1987;37:1586–91 doi:10.1212/wnl.37.10.1586 pmid:3658161
    CrossRefPubMed
  44. 44.↵
    1. Qureshi AI,
    2. Sung GY,
    3. Razumovsky AY, et al
    . Early identification of patients at risk for symptomatic vasospasm after aneurysmal subarachnoid hemorrhage. Crit Care Med 2000;28:984–90 doi:10.1097/00003246-200004000-00012 pmid:10809270
    CrossRefPubMedWeb of Science
  45. 45.↵
    1. Dumont TM
    . Prospective assessment of a symptomatic cerebral vasospasm predictive neural network model. World Neurosurg 2016;94:126–30 doi:10.1016/j.wneu.2016.06.110 pmid:27392898
    CrossRefPubMed
  46. 46.↵
    1. Ramos LA,
    2. van der Steen WE,
    3. Sales Barros R, et al
    . Machine learning improves prediction of delayed cerebral ischemia in patients with subarachnoid hemorrhage. J Neurointerv Surg 2019;11:497–502 doi:10.1136/neurintsurg-2018-014258 pmid:30415227
    Abstract/FREE Full Text
  47. 47.↵
    1. Tanioka S,
    2. Ishida F,
    3. Nakano F, et al
    . Machine learning analysis of matricellular proteins and clinical variables for early prediction of delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. Mol Neurobiol 2019;56:7128–35 doi:10.1007/s12035-019-1601-7 pmid:30989629
    CrossRefPubMed
  48. 48.↵
    1. Rubbert C,
    2. Patil KR,
    3. Beseoglu K, et al
    . Prediction of outcome after aneurysmal subarachnoid haemorrhage using data from patient admission. Eur Radiol 2018;28:4949–58 doi:10.1007/s00330-018-5505-0 pmid:29948072
    CrossRefPubMed
  49. 49.↵
    1. Brinjikji W,
    2. Murad MH,
    3. Lanzino G, et al
    . Endovascular treatment of intracranial aneurysms with flow diverters: a meta-analysis. Stroke 2013;44:442–47 doi:10.1161/STROKEAHA.112.678151 pmid:23321438
    Abstract/FREE Full Text
  50. 50.↵
    1. Christodoulou E,
    2. Ma J,
    3. Collins GS, et al
    . A systematic review shows no performance benefit of machine learning over logistic regression for clinical prediction models. J Clin Epidemiol 2019;110:12–22 doi:10.1016/j.jclinepi.2019.02.004 pmid:30763612
    CrossRefPubMed
  51. 51.↵
    1. Lee JG,
    2. Jun S,
    3. Cho YW, et al
    . Deep learning in medical imaging: general overview. Korean J Radiology 2017;18:570–84 doi:10.3348/kjr.2017.18.4.570 pmid:28670152
    CrossRefPubMed
  52. 52.↵
    1. Retson TA,
    2. Besser AH,
    3. Sall S, et al
    . Machine learning and deep neural networks in thoracic and cardiovascular imaging. J Thorac Imaging 2019;34:192–201 doi:10.1097/RTI.0000000000000385 pmid:31009397
    CrossRefPubMed
  53. 53.↵
    1. Morris MA,
    2. Saboury B,
    3. Burkett B, et al
    . Reinventing radiology: big data and the future of medical imaging. J Thorac Imaging 2018;33:4–16 doi:10.1097/RTI.0000000000000311 pmid:29252898
    CrossRefPubMed
  54. 54.↵
    1. Hesamian MH,
    2. Jia W,
    3. He X, et al
    . Deep learning techniques for medical image segmentation: achievements and challenges. J Digit Imaging 2019;32:582–96 doi:10.1007/s10278-019-00227-x pmid:31144149
    CrossRefPubMed
  55. 55.↵
    1. Kim DW,
    2. Jang HY,
    3. Kim KW, et al
    . Design characteristics of studies reporting the performance of artificial intelligence algorithms for diagnostic analysis of medical images: results from recently published papers. Korean J Radiol 2019;20:405–10 doi:10.3348/kjr.2019.0025 pmid:30799571
    CrossRefPubMed
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 41 (3)
American Journal of Neuroradiology
Vol. 41, Issue 3
1 Mar 2020
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Artificial Intelligence in the Management of Intracranial Aneurysms: Current Status and Future Perspectives
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
Z. Shi, B. Hu, U.J. Schoepf, R.H. Savage, D.M. Dargis, C.W. Pan, X.L. Li, Q.Q. Ni, G.M. Lu, L.J. Zhang
Artificial Intelligence in the Management of Intracranial Aneurysms: Current Status and Future Perspectives
American Journal of Neuroradiology Mar 2020, 41 (3) 373-379; DOI: 10.3174/ajnr.A6468

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Artificial Intelligence in the Management of Intracranial Aneurysms: Current Status and Future Perspectives
Z. Shi, B. Hu, U.J. Schoepf, R.H. Savage, D.M. Dargis, C.W. Pan, X.L. Li, Q.Q. Ni, G.M. Lu, L.J. Zhang
American Journal of Neuroradiology Mar 2020, 41 (3) 373-379; DOI: 10.3174/ajnr.A6468
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • CONCLUSIONS
    • Footnotes
    • References
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • Comprehensive imaging analysis of intracranial atherosclerosis
  • Deep geometric learning for intracranial aneurysm detection: towards expert rater performance
  • Artificial Intelligence and Machine Learning in Aneurysmal Subarachnoid Hemorrhage: Future Promises, Perils, and Practicalities
  • Rupture risk prediction of cerebral aneurysms using a novel convolutional neural network-based deep learning model
  • Detection of clustered anomalies in single-voxel morphometry as a rapid automated method for identifying intracranial aneurysms
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • Diagnostic Neuroradiology of Monoclonal Antibodies
  • Clinical Outcomes After Chiari I Decompression
  • Segmentation of Brain Metastases with BLAST
Show more Adult Brain

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire