Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Research ArticleHead and Neck Imaging

Fully Automated Segmentation of Globes for Volume Quantification in CT Images of Orbits using Deep Learning

L. Umapathy, B. Winegar, L. MacKinnon, M. Hill, M.I. Altbach, J.M. Miller and A. Bilgin
American Journal of Neuroradiology June 2020, 41 (6) 1061-1069; DOI: https://doi.org/10.3174/ajnr.A6538
L. Umapathy
aFrom the Departments of Electrical and Computer Engineering (L.U., A.B.)
bMedical Imaging (L.U., B.W., L.M., M.H., M.I.A., A.B.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for L. Umapathy
B. Winegar
bMedical Imaging (L.U., B.W., L.M., M.H., M.I.A., A.B.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for B. Winegar
L. MacKinnon
bMedical Imaging (L.U., B.W., L.M., M.H., M.I.A., A.B.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for L. MacKinnon
M. Hill
bMedical Imaging (L.U., B.W., L.M., M.H., M.I.A., A.B.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for M. Hill
M.I. Altbach
bMedical Imaging (L.U., B.W., L.M., M.H., M.I.A., A.B.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for M.I. Altbach
J.M. Miller
c Ophthalmology and Vision Science (J.M.M.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for J.M. Miller
A. Bilgin
aFrom the Departments of Electrical and Computer Engineering (L.U., A.B.)
bMedical Imaging (L.U., B.W., L.M., M.H., M.I.A., A.B.)
dBiomedical Engineering (A.B.), University of Arizona, Tucson, Arizona.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for A. Bilgin
  • Article
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Werner MS,
    2. Dana MR,
    3. Viana MAG, et al
    . Predictors of occult scleral rupture. Ophthalmology 1994;101:1941–44 doi:10.1016/S0161-6420(94)31079-7 pmid:7997332
    CrossRefPubMed
  2. 2.↵
    1. Kylstra JA,
    2. Lamkin JC,
    3. Runyan DK
    . Clinical predictors of scleral rupture after blunt ocular trauma. Am J Ophthalmol 1993;115:530–35 doi:10.1016/s0002-9394(14)74458-7 pmid:8470728
    CrossRefPubMed
  3. 3.↵
    1. Chronopoulos A,
    2. Ong JM,
    3. Thumann G, et al
    . Occult globe rupture: diagnostic and treatment challenge. Surv Ophthalmol 2018;63:694–99 doi:10.1016/j.survophthal.2018.04.001 pmid:29649485
    CrossRefPubMed
  4. 4.↵
    1. Harlan JB,
    2. Pieramici DJ
    . Evaluation of patients with ocular trauma. Ophthalmol Clin North Am 2002;15:153–61 doi:10.1016/S0896-1549(02)00006-8 pmid:12229230
    CrossRefPubMed
  5. 5.↵
    1. Lee H,
    2. Jilani M,
    3. Frohman L, et al
    . CT of orbital trauma. Emerg Radiol 2004;10:168–72 doi:10.1007/s10140-003-0282-7 pmid:15290482
    CrossRefPubMed
  6. 6.↵
    1. Arey ML,
    2. Mootha VV,
    3. Whittemore AR, et al
    . Computed tomography in the diagnosis of occult open-globe injuries. Ophthalmology 2007;114:1448–52 doi:10.1016/j.ophtha.2006.10.051 pmid:17678689
    CrossRefPubMed
  7. 7.↵
    1. Kubal WS
    . Imaging of orbital trauma. RadioGraphics 2008;28:1729–39 doi:10.1148/rg.286085523 pmid:18936032
    CrossRefPubMed
  8. 8.↵
    1. Kim SY,
    2. Lee JH,
    3. Lee YJ, et al
    . Diagnostic value of the anterior chamber depth of a globe on CT for detecting open-globe injury. Eur Radiology 2010;20:1079–84 doi:10.1007/s00330-009-1653-6 pmid:19890637
    CrossRefPubMed
  9. 9.↵
    1. Crowell EL,
    2. Koduri VA,
    3. Supsupin EP, et al
    . Accuracy of computed tomography imaging criteria in the diagnosis of adult open globe injuries by neuroradiology and ophthalmology. Acad Emerg Med 2017;24:1072–79 doi:10.1111/acem.13249 pmid:28662312
    CrossRefPubMed
  10. 10.↵
    1. Yuan W-H,
    2. Hsu H-C,
    3. Cheng H-C, et al
    . CT of globe rupture: analysis and frequency of findings. AJR Am J Roentgenol 2014;202:1100–07 doi:10.2214/AJR.13.11010
    CrossRefPubMed
  11. 11.↵
    1. Joseph DP,
    2. Pieramici DJ,
    3. Beauchamp NJ
    . Computed tomography in the diagnosis and prognosis of open-globe injuries. Ophthalmology 2000;107:1899–1906 doi:10.1016/S0161-6420(00)00335-3
    CrossRefPubMed
  12. 12.↵
    1. Bekes G,
    2. Máté E,
    3. Nyúl LG, et al
    . Geometrical model-based segmentation of the organs of sight on CT images. Med Phys 2008;35:735–43 doi:10.1118/1.2826557
    CrossRefPubMed
  13. 13.↵
    1. Harrigan RL,
    2. Panda S,
    3. Asman AJ, et al
    . Robust optic nerve segmentation on clinically acquired computed tomography. J Med Imaging 2014;1:034006 doi:10.1117/1.JMI.1.3.03400
    CrossRef
  14. 14.↵
    1. Sharma N,
    2. Aggarwal LM
    . Automated medical image segmentation techniques. J Med Phys 2010;35:3–14 doi:10.4103/0971-6203.58777 pmid:20177565
    CrossRefPubMed
  15. 15.↵
    1. Warfield SK,
    2. Zou KH,
    3. Wells WM
    . Simultaneous truth and performance level estimation (STAPLE): An algorithm for the validation of image segmentation. IEEE Trans Med Imaging 2004;23:903–21 doi:10.1109/TMI.2004.828354
    CrossRefPubMedWeb of Science
  16. 16.↵
    1. Asman AJ,
    2. Landman BA
    . Non-local statistical label fusion for multi-atlas segmentation. Med Image Anal 2013;17:194–208 doi:10.1016/j.media.2012.10.002
    CrossRef
  17. 17.↵
    1. Aghdasi N,
    2. Li Y,
    3. Berens A, et al
    . Efficient orbital structures segmentation with prior anatomical knowledge. J Med Imaging 2017;4:034501 doi:10.1117/1.JMI.4.3.034501
    CrossRef
  18. 18.↵
    1. Kooi T,
    2. Litjens G,
    3. van Ginneken B, et al
    . Large scale deep learning for computer aided detection of mammographic lesions. Med Image Anal 2017;35:303–12 doi:10.1016/j.media.2016.07.007
    CrossRefPubMed
  19. 19.↵
    1. Van Grinsven M,
    2. Van Ginneken B,
    3. Hoyng CB, et al
    . Fast convolutional neural network training using selective data sampling: application to hemorrhage detection in color fundus images. IEEE Trans Med Imaging 2016;35:1273–84 doi:10.1109/TMI.2016.2526689
    CrossRef
  20. 20.↵
    1. Litjens G,
    2. Kooi T,
    3. Bejnordi BE, et al
    . A survey on deep learning in medical image analysis. Med Image Anal 2017;42:60–88 doi:10.1016/j.media.2017.07.005 pmid:28778026
    CrossRefPubMed
  21. 21.↵
    1. Ronneberger O,
    2. Fischer P,
    3. Brox T
    . U-Net: convolutional networks for biomedical image segmentation. May 2015. http://arxiv.org/abs/1505.04597. Accessed July 19, 2019.
  22. 22.↵
    1. He K,
    2. Zhang X,
    3. Ren S, et al
    . Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, June 27–30, 2016 doi:10.1109/CVPR.2016.90
    CrossRef
  23. 23.↵
    1. He K,
    2. Zhang X,
    3. Ren S, et al
    . Identity mappings in deep residual networks. Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics) 2016;630–45
  24. 24.↵
    1. Zagoruyko S,
    2. Komodakis N
    . Wide residual network In: Proceedings of the British Machine Vision Conference 2016. British Machine Vision Association; 2016:87.1–87.12 doi:10.5244/C.30.87
    CrossRef
  25. 25.↵
    1. Guerrero R,
    2. Qin C,
    3. Oktay O, et al
    . White matter hyperintensity and stroke lesion segmentation and differentiation using convolutional neural networks. NeuroImage Clin 2018;17:918–34 doi:10.1016/j.nicl.2017.12.022 pmid:29527496
    CrossRefPubMed
  26. 26.↵
    1. Ioffe S,
    2. Szegedy C
    . Batch normalization: accelerating deep network training by reducing internal covariate shift. 2015. http://arxiv.org/abs/1502.03167
  27. 27.↵
    1. Srivastava N,
    2. Hinton G,
    3. Krizhevsky A, et al
    . Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res 2014;15:1929–58. http://jmlr.org/papers/v15/srivastava14a.html
    CrossRef
  28. 28.↵
    1. Abadi M,
    2. Agarwal A,
    3. Barham P, et al
    . TensorFlow: large-scale machine learning on heterogeneous distributed systems. 2016. https://arxiv.org/abs/1603.04467v2. Accessed April 25, 2020
  29. 29.↵
    1. Kingma DP,
    2. Ba J
    . Adam: a method for stochastic optimization. 2014. https://arxiv.org/abs/1412.6980v9. Accessed April 25, 2020
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 41 (6)
American Journal of Neuroradiology
Vol. 41, Issue 6
1 Jun 2020
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Fully Automated Segmentation of Globes for Volume Quantification in CT Images of Orbits using Deep Learning
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
L. Umapathy, B. Winegar, L. MacKinnon, M. Hill, M.I. Altbach, J.M. Miller, A. Bilgin
Fully Automated Segmentation of Globes for Volume Quantification in CT Images of Orbits using Deep Learning
American Journal of Neuroradiology Jun 2020, 41 (6) 1061-1069; DOI: 10.3174/ajnr.A6538

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Fully Automated Segmentation of Globes for Volume Quantification in CT Images of Orbits using Deep Learning
L. Umapathy, B. Winegar, L. MacKinnon, M. Hill, M.I. Altbach, J.M. Miller, A. Bilgin
American Journal of Neuroradiology Jun 2020, 41 (6) 1061-1069; DOI: 10.3174/ajnr.A6538
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • ACKNOWLEDGMENTS
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

Head and Neck Imaging

  • Hydrops Herniation into the Semicircular Canals
  • ASL Sensitivity for Head and Neck Paraganglioma
  • Post SRS Peritumoral Hyperintense Signal of VSs
Show more Head and Neck Imaging

Functional

  • Kurtosis and Epileptogenic Tubers: A Pilot Study
  • Glutaric Aciduria Type 1: DK vs. Conventional MRI
  • Brain Iron in Niemann-Pick Type C: 7T Study
Show more Functional

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire