Index by author
November 01, 2021; Volume 42,Issue 11
Tedeschi, E.
- EDITOR'S CHOICEAdult BrainOpen AccessA Combined Radiomics and Machine Learning Approach to Overcome the Clinicoradiologic Paradox in Multiple SclerosisG. Pontillo, S. Tommasin, R. Cuocolo, M. Petracca, N. Petsas, L. Ugga, A. Carotenuto, C. Pozzilli, R. Iodice, R. Lanzillo, M. Quarantelli, V. Brescia Morra, E. Tedeschi, P. Pantano and S. CocozzaAmerican Journal of Neuroradiology November 2021, 42 (11) 1927-1933; DOI: https://doi.org/10.3174/ajnr.A7274
The multidimensional analysis of brain MR images, including radiomic features and clinicodemographic data, is highly informative of the clinical status of patients with multiple sclerosis, representing a promising approach to bridge the gap between conventional imaging and disability.
Thomas, Bejoy
- You have accessPerspectivesBejoy ThomasAmerican Journal of Neuroradiology November 2021, 42 (11) 1919; DOI: https://doi.org/10.3174/ajnr.P0116
Tommasin, S.
- EDITOR'S CHOICEAdult BrainOpen AccessA Combined Radiomics and Machine Learning Approach to Overcome the Clinicoradiologic Paradox in Multiple SclerosisG. Pontillo, S. Tommasin, R. Cuocolo, M. Petracca, N. Petsas, L. Ugga, A. Carotenuto, C. Pozzilli, R. Iodice, R. Lanzillo, M. Quarantelli, V. Brescia Morra, E. Tedeschi, P. Pantano and S. CocozzaAmerican Journal of Neuroradiology November 2021, 42 (11) 1927-1933; DOI: https://doi.org/10.3174/ajnr.A7274
The multidimensional analysis of brain MR images, including radiomic features and clinicodemographic data, is highly informative of the clinical status of patients with multiple sclerosis, representing a promising approach to bridge the gap between conventional imaging and disability.
In this issue
American Journal of Neuroradiology
Vol. 42, Issue 11
1 Nov 2021
Advertisement
Advertisement