Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Research ArticleAdult Brain
Open Access

MTT and Blood-Brain Barrier Disruption within Asymptomatic Vascular WM Lesions

B.E. Dewey, X. Xu, L. Knutsson, A. Jog, J.L. Prince, P.B. Barker, P.C.M. van Zijl, R. Leigh and P. Nyquist
American Journal of Neuroradiology August 2021, 42 (8) 1396-1402; DOI: https://doi.org/10.3174/ajnr.A7165
B.E. Dewey
aFrom the Department of Electrical and Computer Engineering (B.E.D., J.L.P.), Johns Hopkins University, Baltimore, Maryland
bF.M. Kirby Research Center for Functional Brain Imaging (B.E.D., X.X., P.B.B., P.C.M.v.Z.), Kennedy Krieger Institute, Baltimore, Maryland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for B.E. Dewey
X. Xu
bF.M. Kirby Research Center for Functional Brain Imaging (B.E.D., X.X., P.B.B., P.C.M.v.Z.), Kennedy Krieger Institute, Baltimore, Maryland
cDepartment of Radiology and Radiological Science (X.X., L.K., J.L.P., P.B.B., P.C.M.v.Z.), Division of MRI Research, Johns Hopkins University, Baltimore, Maryland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for X. Xu
L. Knutsson
cDepartment of Radiology and Radiological Science (X.X., L.K., J.L.P., P.B.B., P.C.M.v.Z.), Division of MRI Research, Johns Hopkins University, Baltimore, Maryland
dDepartment of Medical Radiation Physics (L.K.), Lund University, Lund, Sweden
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for L. Knutsson
A. Jog
eAthinoula A. Martinos Center for Biomedical Imaging (A.J.), Harvard University Medical School, Boston Massachusetts
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for A. Jog
J.L. Prince
aFrom the Department of Electrical and Computer Engineering (B.E.D., J.L.P.), Johns Hopkins University, Baltimore, Maryland
cDepartment of Radiology and Radiological Science (X.X., L.K., J.L.P., P.B.B., P.C.M.v.Z.), Division of MRI Research, Johns Hopkins University, Baltimore, Maryland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for J.L. Prince
P.B. Barker
bF.M. Kirby Research Center for Functional Brain Imaging (B.E.D., X.X., P.B.B., P.C.M.v.Z.), Kennedy Krieger Institute, Baltimore, Maryland
cDepartment of Radiology and Radiological Science (X.X., L.K., J.L.P., P.B.B., P.C.M.v.Z.), Division of MRI Research, Johns Hopkins University, Baltimore, Maryland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for P.B. Barker
P.C.M. van Zijl
bF.M. Kirby Research Center for Functional Brain Imaging (B.E.D., X.X., P.B.B., P.C.M.v.Z.), Kennedy Krieger Institute, Baltimore, Maryland
cDepartment of Radiology and Radiological Science (X.X., L.K., J.L.P., P.B.B., P.C.M.v.Z.), Division of MRI Research, Johns Hopkins University, Baltimore, Maryland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for P.C.M. van Zijl
R. Leigh
fDepartment of Neurology (R.L., P.N.), Electrical and Computer Engineering (B.E.D., J.L.P.), Johns Hopkins University, Baltimore, Maryland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for R. Leigh
P. Nyquist
fDepartment of Neurology (R.L., P.N.), Electrical and Computer Engineering (B.E.D., J.L.P.), Johns Hopkins University, Baltimore, Maryland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for P. Nyquist
  • Article
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Corriveau RA,
    2. Bosetti F,
    3. Emr M, et al
    . The science of vascular contributions to cognitive impairment and dementia (VCID): a framework for advancing research priorities in the cerebrovascular biology of cognitive decline. Cell Mol Neurobiol 2016;36:281–88 doi:10.1007/s10571-016-0334-7 pmid:27095366
    CrossRefPubMed
  2. 2.↵
    1. Corriveau RA,
    2. Koroshetz WJ,
    3. Gladman JT, et al
    . Alzheimer's disease-related dementias summit 2016: national research priorities. Neurology 2017;89:2381–91 doi:10.1212/WNL.0000000000004717 pmid:29117955
    Abstract/FREE Full Text
  3. 3.↵
    1. Bath PM,
    2. Wardlaw JM
    . Pharmacological treatment and prevention of cerebral small vessel disease: a review of potential interventions. Int J Stroke 2015;10:469–78 doi:10.1111/ijs.12466 pmid:25727737
    CrossRefPubMed
  4. 4.↵
    1. Wardlaw JM,
    2. Smith C,
    3. Dichgans M
    . Mechanisms of sporadic cerebral small vessel disease: insights from neuroimaging. Lancet Neurol 2013;12:483–97 doi:10.1016/S1474-4422(13)70060-7 pmid:23602162
    CrossRefPubMedWeb of Science
  5. 5.↵
    1. Edrissi H,
    2. Schock SC,
    3. Cadonic R, et al
    . Cilostazol reduces blood brain barrier dysfunction, white matter lesion formation and motor deficits following chronic cerebral hypoperfusion. Brain Res 2016;1646:494–503 doi:10.1016/j.brainres.2016.06.036 pmid:27350079
    CrossRefPubMed
  6. 6.↵
    1. Wardlaw JM,
    2. Smith EE,
    3. Biessels GJ, et al
    . Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol 2013;12:822–38 doi:10.1016/S1474-4422(13)70124-8 pmid:23867200
    CrossRefPubMedWeb of Science
  7. 7.↵
    1. Thrippleton MJ,
    2. Backes WH,
    3. Sourbron S, et al
    . Quantifying blood-brain barrier leakage in small vessel disease: review and consensus recommendations. Alzheimers Dement 2019;15:840–58 doi:10.1016/j.jalz.2019.01.013 pmid:31031101
    CrossRefPubMed
  8. 8.↵
    1. Tsai CF,
    2. Thomas B,
    3. Sudlow CL
    . Epidemiology of stroke and its subtypes in Chinese vs white populations: a systematic review. Neurology 2013;81:264–72 doi:10.1212/WNL.0b013e31829bfde3 pmid:23858408
    Abstract/FREE Full Text
  9. 9.↵
    1. Maillard P,
    2. Carmichael O,
    3. Fletcher E, et al
    . Coevolution of white matter hyperintensities and cognition in the elderly. Neurology 2012;79:442–48 doi:10.1212/WNL.0b013e3182617136 pmid:22815562
    Abstract/FREE Full Text
  10. 10.↵
    1. Traylor M,
    2. Lewis CM
    . Genetic discovery in multi-ethnic populations. Eur J Hum Genet 2016;24:1097–98 doi:10.1038/ejhg.2016.38 pmid:27142679
    CrossRefPubMed
  11. 11.↵
    1. Vermeer SE,
    2. Longstreth WT Jr.,
    3. Koudstaal PJ
    . Silent brain infarcts: a systematic review. Lancet. Neurol 2007;6:611–19 doi:10.1016/S1474-4422(07)70170-9 pmid:17582361
    CrossRefPubMedWeb of Science
  12. 12.↵
    1. Li Y,
    2. Li M,
    3. Zuo L, et al
    . Compromised blood-brain barrier integrity is associated with total magnetic resonance imaging burden of cerebral small vessel disease. Front Neurol 2018;9:221 doi:10.3389/fneur.2018.00221 pmid:29681883
    CrossRefPubMed
  13. 13.↵
    1. Luciano M,
    2. Marioni RE,
    3. Valdes HM, et al
    . Structural brain MRI trait polygenic score prediction of cognitive abilities. Twin Res Hum Genet 2015;18:738–45 doi:10.1017/thg.2015.71 pmid:26427786
    CrossRefPubMed
  14. 14.↵
    1. Habes M,
    2. Erus G,
    3. Toledo JB, et al
    . White matter hyperintensities and imaging patterns of brain ageing in the general population. Brain 2016;139:1164–79 doi:10.1093/brain/aww008 pmid:26912649
    CrossRefPubMed
  15. 15.↵
    1. Maki T,
    2. Hayakawa K,
    3. Pham LD, et al
    . Biphasic mechanisms of neurovascular unit injury and protection in CNS diseases. CNS Neurol Disord Drug Targets 2013;12:302–15 doi:10.2174/1871527311312030004 pmid:23469847
    CrossRefPubMed
  16. 16.↵
    1. Lo EH,
    2. Rosenberg GA
    . The neurovascular unit in health and disease: introduction. Stroke 2009;40:S2–3 doi:10.1161/STROKEAHA.108.534404 pmid:19064779
    FREE Full Text
  17. 17.↵
    1. Debette S,
    2. Markus HS
    . The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: systematic review and meta-analysis. BMJ 2010;341:c3666 doi:10.1136/bmj.c366]6 pmid:20660506
    Abstract/FREE Full Text
  18. 18.↵
    1. Jagust W
    . Vulnerable neural systems and the borderland of brain aging and neurodegeneration. Neuron 2013;77:219–34 doi:10.1016/j.neuron.2013.01.002 pmid:23352159
    CrossRefPubMed
  19. 19.↵
    1. Fornage M,
    2. Debette S,
    3. Bis JC, et al
    . Genome-wide association studies of cerebral white matter lesion burden: the charge consortium. Ann Neurol 2011;69:928–39 doi:10.1002/ana.22403 pmid:21681796
    CrossRefPubMedWeb of Science
  20. 20.↵
    1. Turner ST,
    2. Jack CR,
    3. Fornage M, et al
    . Heritability of leukoaraiosis in hypertensive sibships. Hypertension 2004;43:483–87 doi:10.1161/01.HYP.0000112303.26158.92 pmid:14718359
    CrossRefPubMed
  21. 21.↵
    1. Verhaaren BF,
    2. Debette S,
    3. Bis JC, et al
    . Multiethnic genome-wide association study of cerebral white matter hyperintensities on MRI. Circ Cardiovasc Genet 2015;8:398–409 doi:10.1161/CIRCGENETICS.114.000858 pmid:25663218
    Abstract/FREE Full Text
  22. 22.↵
    1. Raina A,
    2. Zhao X,
    3. Grove ML, et al
    . Cerebral white matter hyperintensities on MRI and acceleration of epigenetic aging: the Atherosclerosis Risk in Communities Study. Clin Epigenetics 2017;9:21 doi:10.1186/s13148-016-0302-6 pmid:28289478
    CrossRefPubMed
  23. 23.↵
    1. Silbert LC,
    2. Lahna D,
    3. Promjunyakul NO, et al
    . Risk factors associated with cortical thickness and white matter hyperintensities in dementia free Okinawan elderly. J Alzheimers Dis 2018;63:365–72 doi:10.3233/JAD-171153 pmid:29578488
    CrossRefPubMed
  24. 24.↵
    1. Walker KA,
    2. Power MC,
    3. Hoogeveen RC, et al
    . Midlife systemic inflammation, late-life white matter integrity, and cerebral small vessel disease: the Atherosclerosis Risk in Communities Study. Stroke 2017;48:3196–3202 doi:10.1161/STROKEAHA.117.018675 pmid:29101255
    Abstract/FREE Full Text
  25. 25.↵
    1. Nam KW,
    2. Kwon HM,
    3. Jeong HY, et al
    . High neutrophil to lymphocyte ratio is associated with white matter hyperintensity in a healthy population. J Neurol Sci 2017;380:128–31 doi:10.1016/j.jns.2017.07.024 pmid:28870552
    CrossRefPubMed
  26. 26.↵
    1. Wong SM,
    2. Jansen JF,
    3. Zhang CE, et al
    . Blood-brain barrier impairment and hypoperfusion are linked in cerebral small vessel disease. Neurology 2019;92:e1669–77 doi:10.1212/WNL.0000000000007263 pmid:30867275
    Abstract/FREE Full Text
  27. 27.↵
    1. Markus HS,
    2. Lythgoe DJ,
    3. Ostegaard L, et al
    . Reduced cerebral blood flow in white matter in ischaemic leukoaraiosis demonstrated using quantitative exogenous contrast-based perfusion MRI. J Neurol Neurosurg Psychiatry 2000;69:48–53 doi:10.1136/jnnp.69.1.48 pmid:10864603
    Abstract/FREE Full Text
  28. 28.↵
    1. Arba F,
    2. Leigh R,
    3. Inzitari D, et al
    . Blood-brain barrier leakage increases with small vessel disease in acute ischemic stroke. Neurology 2017;89:2143–50 doi:10.1212/WNL.0000000000004677 pmid:29070665
    Abstract/FREE Full Text
  29. 29.↵
    1. Gupta N,
    2. Simpkins AN,
    3. Hitomi E, et al
    . White matter hyperintensity-associated blood-brain barrier disruption and vascular risk factors. J Stroke Cerebrovasc Dis 2018;27:466–71 doi:10.1016/j.jstrokecerebrovasdis.2017.09.026 pmid:29100854
    CrossRefPubMed
  30. 30.↵
    1. Schumann P,
    2. Touzani O,
    3. Young AR, et al
    . Evaluation of the ratio of cerebral blood flow to cerebral blood volume as an index of local cerebral perfusion pressure. Brain 1998;121:1369–79 doi:10.1093/brain/121.7.1369 pmid:9679787
    CrossRefPubMedWeb of Science
  31. 31.↵
    1. Shi Y,
    2. Thrippleton MJ,
    3. Makin SD, et al
    . Cerebral blood flow in small vessel disease: a systematic review and meta-analysis. J Cereb Blood Flow Metab 2016;36:1653–67 doi:10.1177/0271678X16662891 pmid:27496552
    CrossRefPubMed
  32. 32.↵
    1. Zaharchuk G
    . Theoretical basis of hemodynamic MR imaging techniques to measure cerebral blood volume, cerebral blood flow, and permeability. AJNR Am J Neuroradiol 2007;28:1850–58 doi:10.3174/ajnr.A0831 pmid:17998415
    CrossRefPubMed
  33. 33.↵
    1. Patlak CS,
    2. Blasberg RG,
    3. Fenstermacher JD
    . Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab 1983;3:1–7 doi:10.1038/jcbfm.1983.1 pmid:6822610
    CrossRefPubMedWeb of Science
  34. 34.↵
    1. Brickman AM,
    2. Zahra A,
    3. Muraskin J, et al
    . Reduction in cerebral blood flow in areas appearing as white matter hyperintensities on magnetic resonance imaging. Psychiatry Res 2009;172:117–20 doi:10.1016/j.pscychresns.2008.11.006 pmid:19324534
    CrossRefPubMedWeb of Science
  35. 35.↵
    1. Sachdev P,
    2. Wen W,
    3. Shnier R, et al
    . Cerebral blood volume in T2-weighted white matter hyperintensities using exogenous contrast-based perfusion MRI. J Neuropsychiatry Clin Neurosci 2004;16:83–92 doi:10.1176/appi.neuropsych.16.1.83 pmid:14990763
    CrossRefPubMed
  36. 36.↵
    1. Knutsson L,
    2. Stahlberg F,
    3. Wirestam R
    . Absolute quantification of perfusion using dynamic susceptibility contrast MRI: pitfalls and possibilities. MAGMA 2010;23:1–21 doi:10.1007/s10334-009-0190-2 pmid:19960361
    CrossRefPubMed
  37. 37.↵
    1. Nyquist PA,
    2. Bilgel M,
    3. Gottesman R, et al
    . Age differences in periventricular and deep white matter lesions. Neurobiol Aging 2015;36:1653–58 doi:10.1016/j.neurobiolaging.2015.01.005 pmid:25659858
    CrossRefPubMed
  38. 38.↵
    1. Nyquist PA,
    2. Yanek LR,
    3. Bilgel M, et al
    . Effect of white matter lesions on manual dexterity in healthy middle-aged persons. Neurology 2015;84:1920–26 doi:10.1212/WNL.0000000000001557 pmid:25862800
    CrossRefPubMed
  39. 39.↵
    1. Nyquist PA,
    2. Yanek LR,
    3. Kral BG, et al
    . White matter lesion progression and cognitive function over 5 years in a young susceptible population. Neuroepidemiology 2017;49:62–63 doi:10.1159/000480238 pmid:28850949
    CrossRefPubMed
  40. 40.↵
    1. Roy S,
    2. He Q,
    3. Sweeney E, et al
    . Subject-specific sparse dictionary learning for atlas-based brain MRI segmentation. IEEE J Biomed Health Inform 2015;19:1598–1609 doi:10.1109/JBHI.2015.2439242 pmid:26340685
    CrossRefPubMed
  41. 41.↵
    1. Roy S,
    2. Carass A,
    3. Prince JL, et al
    . Subject-specific sparse dictionary learning for atlas based brain MRI segmentation. Mach Learning Med Imaging 2014;8679:248–55 doi:10.1007/978-3-319-10581-9_31 pmid:25383394
    CrossRefPubMed
  42. 42.↵
    1. O'Sullivan M,
    2. Lythgoe DJ,
    3. Pereira AC, et al
    . Patterns of cerebral blood flow reduction in patients with ischemic leukoaraiosis. Neurology 2002;59:321–26 doi:10.1212/WNL.59.3.321 pmid:12177363
    Abstract/FREE Full Text
  43. 43.↵
    1. Becker DM,
    2. Yook RM,
    3. Moy TF, et al
    . Markedly high prevalence of coronary risk factors in apparently healthy African-American and White siblings of persons with premature coronary heart disease. Am J Cardiol 1998;82:1046–51 doi:10.1016/S0002-9149(98)00553-0 pmid:9817479
    CrossRefPubMedWeb of Science
  44. 44.↵
    1. Nyquist PA,
    2. Wityk R,
    3. Yanek LR, et al
    . Silent small-vessel cerebrovascular disease and silent myocardial ischemia in families with premature coronary disease. Neuroepidemiology 2009;33:66–67 doi:10.1159/000215831 pmid:19407462
    CrossRefPubMed
  45. 45.↵
    1. Shiee N,
    2. Bazin PL,
    3. Ozturk A, et al
    . A topology-preserving approach to the segmentation of brain images with multiple sclerosis lesions. Neuroimage 2010;49:1524–35 doi:10.1016/j.neuroimage.2009.09.005 pmid:19766196
    CrossRefPubMed
  46. 46.↵
    1. Sourbron SP,
    2. Buckley DL
    . On the scope and interpretation of the Tofts models for DCE-MRI. Magn Reson Med 2011;66:735–45 doi:10.1002/mrm.22861 pmid:21384424
    CrossRefPubMed
  47. 47.↵
    1. Wu O,
    2. Østergaard L,
    3. Weisskoff RM, et al
    . Tracer arrival timing-insensitive technique for estimating flow in MR perfusion-weighted imaging using singular value decomposition with a block-circulant deconvolution matrix. Magn Reson Med 2003;50:164–74 doi:10.1002/mrm.10522 pmid:12815691
    CrossRefPubMedWeb of Science
  48. 48.↵
    1. Dewey B
    . ECTRIMS ONLINE LIBRARY. 2017. https://www.ectrims.eu/online-library/. Accessed March 1, 2020
  49. 49.↵
    1. Avants BB,
    2. Tustison NJ,
    3. Song G, et al
    . A reproducible evaluation of ANTS similarity metric performance in brain image registration. Neuroimage 2011;54:2033–44 doi:10.1016/j.neuroimage.2010.09.025 pmid:20851191
    CrossRefPubMed
  50. 50.↵
    1. Roy S,
    2. Butman JA,
    3. Pham DL
    . Robust skull stripping using multiple MR image contrasts insensitive to pathology. Neuroimage 2017;146:132–47 doi:10.1016/j.neuroimage.2016.11.017 pmid:27864083
    CrossRefPubMed
  51. 51.↵
    1. Huo Y,
    2. Plassard AJ,
    3. Carass A, et al
    . Consistent cortical reconstruction and multi-atlas brain segmentation. Neuroimage 2016;138:197–210 doi:10.1016/j.neuroimage.2016.05.030 pmid:27184203
    CrossRefPubMed
  52. 52.↵
    1. Leigh R,
    2. Jen SS,
    3. Varma DD, et al
    . Arrival time correction for dynamic susceptibility contrast MR permeability imaging in stroke patients. PLoS.One 2012;7:e52656 doi:10.1371/journal.pone.0052656 pmid:23285132
    CrossRefPubMed
  53. 53.↵
    1. Boxerman JL,
    2. Schmainda KM,
    3. Weisskoff RM
    . Relative cerebral blood volume maps corrected for contrast agent extravasation significantly correlate with glioma tumor grade, whereas uncorrected maps do not. AJNR Am J Neuroradiol 2006;27:859–67 pmid:16611779
    PubMedWeb of Science
  54. 54.↵
    1. Oishi K,
    2. Faria A,
    3. Jiang H, et al
    . Atlas-based whole brain white matter analysis using large deformation diffeomorphic metric mapping: application to normal elderly and Alzheimer's disease participants. Neuroimage 2009;46:486–99 doi:10.1016/j.neuroimage.2009.01.002 pmid:19385016
    CrossRefPubMedWeb of Science
  55. 55.↵
    1. R Core Team
    . R: A Language and Environment for Statistical Computing. https://cran.r-project.org/doc/manuals/r-release/fullrefman.pdf. Accessed March 1, 2020
  56. 56.↵
    1. Marstrand JR,
    2. Garde E,
    3. Rostrup E, et al
    . Cerebral perfusion and cerebrovascular reactivity are reduced in white matter hyperintensities. Stroke 2002;33:972–76 doi:10.1161/01.STR.0000012808.81667.4B pmid:11935046
    Abstract/FREE Full Text
  57. 57.↵
    1. Perkio J,
    2. Aronen HJ,
    3. Kangasmaki A, et al
    . Evaluation of four postprocessing methods for determination of cerebral blood volume and mean transit time by dynamic susceptibility contrast imaging. Magn Reson Med 2002;47:973–81 doi:10.1002/mrm.10126 pmid:11979577
    CrossRefPubMedWeb of Science
  58. 58.↵
    1. Mazziotta J,
    2. Toga A,
    3. Evans A, et al
    . A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM). Philos Trans R Soc Lond B Biol Sci 2001;356:1293–22 doi:10.1098/rstb.2001.0915 pmid:11545704
    CrossRefPubMedWeb of Science
  59. 59.↵
    1. Bazin PL,
    2. Cuzzocreo JL,
    3. Yassa MA, et al
    . Volumetric neuroimage analysis extensions for the MIPAV Software Package. J Neurosci Methods 2007;165:111–21 doi:10.1016/j.jneumeth.2007.05.024 pmid:17604116
    CrossRefPubMedWeb of Science
  60. 60.↵
    1. Zierler KL
    . Equations for measuring blood flow by external monitoring of radioisotopes. Circ Res 1965;16:309–21 doi:10.1161/01.RES.16.4.309 pmid:14270567
    Abstract/FREE Full Text
  61. 61.↵
    1. Rempp KA,
    2. Brix G,
    3. Wenz F, et al
    . Quantification of regional cerebral blood flow and volume with dynamic susceptibility contrast-enhanced MR imaging. Radiology 1994;193:637–41 doi:10.1148/radiology.193.3.7972800 pmid:7972800
    CrossRefPubMedWeb of Science
  62. 62.↵
    1. Promjunyakul NO,
    2. Lahna DL,
    3. Kaye JA, et al
    . Comparison of cerebral blood flow and structural penumbras in relation to white matter hyperintensities: a multi-modal magnetic resonance imaging study. J Cereb Blood Flow Metab 2016;36:1528–36 doi:10.1177/0271678X16651268 pmid:27270266
    CrossRefPubMed
  63. 63.↵
    1. van Osch MJ,
    2. Teeuwisse WM,
    3. van Walderveen MA, et al
    . Can arterial spin-labeling detect white matter perfusion signal? Magn Reson Med 2009;62:165–73 doi:10.1002/mrm.22002 pmid:19365865
    CrossRefPubMed
  64. 64.↵
    1. Welker K,
    2. Boxerman J,
    3. Kalnin A, et al
    . ASFNR recommendations for clinical performance of MR dynamic susceptibility contrast perfusion imaging of the brain. AJNR Am J Neuroradiol 2015;36:E41–51 doi:10.3174/ajnr.A4341 pmid:25907520
    Abstract/FREE Full Text
  65. 65.↵
    1. Barnes SR,
    2. Ng TS,
    3. Montagne A, et al
    . Optimal acquisition and modeling parameters for accurate assessment of low Ktrans blood-brain barrier permeability using dynamic contrast-enhanced MRI. Magn Reson Med 2016;75:1967–77 doi:10.1002/mrm.25793 pmid:26077645
    CrossRefPubMed
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 42 (8)
American Journal of Neuroradiology
Vol. 42, Issue 8
1 Aug 2021
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
MTT and Blood-Brain Barrier Disruption within Asymptomatic Vascular WM Lesions
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
B.E. Dewey, X. Xu, L. Knutsson, A. Jog, J.L. Prince, P.B. Barker, P.C.M. van Zijl, R. Leigh, P. Nyquist
MTT and Blood-Brain Barrier Disruption within Asymptomatic Vascular WM Lesions
American Journal of Neuroradiology Aug 2021, 42 (8) 1396-1402; DOI: 10.3174/ajnr.A7165

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
MTT and Blood-Brain Barrier Disruption within Asymptomatic Vascular WM Lesions
B.E. Dewey, X. Xu, L. Knutsson, A. Jog, J.L. Prince, P.B. Barker, P.C.M. van Zijl, R. Leigh, P. Nyquist
American Journal of Neuroradiology Aug 2021, 42 (8) 1396-1402; DOI: 10.3174/ajnr.A7165
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • Footnotes
    • References
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • Deep Learning-Based Generation of DSC MRI Parameter Maps Using Dynamic Contrast-Enhanced MRI Data
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

Adult Brain

  • Diagnostic Neuroradiology of Monoclonal Antibodies
  • Clinical Outcomes After Chiari I Decompression
  • Segmentation of Brain Metastases with BLAST
Show more Adult Brain

Functional

  • Kurtosis and Epileptogenic Tubers: A Pilot Study
  • Glutaric Aciduria Type 1: DK vs. Conventional MRI
  • Multiparametric MRI in PEDS Pontine Glioma
Show more Functional

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire