Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • AJNR Case Collection
    • Case of the Week Archive
    • Classic Case Archive
    • Case of the Month Archive
  • Special Collections
    • Spinal CSF Leak Articles (Jan 2020-June 2024)
    • 2024 AJNR Journal Awards
    • Most Impactful AJNR Articles
  • Multimedia
    • AJNR Podcast
    • AJNR Scantastics
    • Video Articles
  • For Authors
    • Submit a Manuscript
    • Author Policies
    • Fast publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Manuscript Submission Guidelines
    • Imaging Protocol Submission
    • Submit a Case for the Case Collection
  • About Us
    • About AJNR
    • Editorial Board
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Other Publications
    • ajnr

User menu

  • Alerts
  • Log in
  • Log out

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in
  • Log out

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • AJNR Case Collection
    • Case of the Week Archive
    • Classic Case Archive
    • Case of the Month Archive
  • Special Collections
    • Spinal CSF Leak Articles (Jan 2020-June 2024)
    • 2024 AJNR Journal Awards
    • Most Impactful AJNR Articles
  • Multimedia
    • AJNR Podcast
    • AJNR Scantastics
    • Video Articles
  • For Authors
    • Submit a Manuscript
    • Author Policies
    • Fast publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Manuscript Submission Guidelines
    • Imaging Protocol Submission
    • Submit a Case for the Case Collection
  • About Us
    • About AJNR
    • Editorial Board
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

Welcome to the new AJNR, Updated Hall of Fame, and more. Read the full announcements.


AJNR is seeking candidates for the position of Associate Section Editor, AJNR Case Collection. Read the full announcement.

 

Research ArticlePediatrics

Diffusion MRI Microstructural Abnormalities at Term-Equivalent Age Are Associated with Neurodevelopmental Outcomes at 3 Years of Age in Very Preterm Infants

M.N. Parikh, M. Chen, A. Braimah, J. Kline, K. McNally, J.W. Logan, L. Tamm, K.O. Yeates, W. Yuan, L. He and N.A. Parikh
American Journal of Neuroradiology August 2021, 42 (8) 1535-1542; DOI: https://doi.org/10.3174/ajnr.A7135
M.N. Parikh
aFrom the Perinatal Institute (M.N.P., J.K., L.H., N.A.P.), Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for M.N. Parikh
M. Chen
bImaging Research Center (M.C., A.B., W.Y.), Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
cDepartment of Electronic Engineering and Computer Science (M.C.), College of Engineering and Applied Science, University of Cincinnati, Cincinnati, Ohio
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for M. Chen
A. Braimah
bImaging Research Center (M.C., A.B., W.Y.), Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for A. Braimah
J. Kline
aFrom the Perinatal Institute (M.N.P., J.K., L.H., N.A.P.), Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for J. Kline
K. McNally
dCenter for Perinatal Research (K.M., J.W.L.), The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for K. McNally
J.W. Logan
dCenter for Perinatal Research (K.M., J.W.L.), The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for J.W. Logan
L. Tamm
gDepartment of Pediatrics (L.T., L.H., N.A.P.), University of Cincinnati College of Medicine, Cincinnati, Ohio
hCenter for ADHD (L.T.), Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for L. Tamm
K.O. Yeates
eDepartment of Psychology (K.O.Y.), Alberta Children's Hospital Research Institute and Hotchkiss Brain Institute, and University of Calgary, Alberta, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for K.O. Yeates
W. Yuan
bImaging Research Center (M.C., A.B., W.Y.), Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
fDepartment of Radiology (W.Y.), University of Cincinnati College of Medicine, Cincinnati, Ohio
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for W. Yuan
L. He
aFrom the Perinatal Institute (M.N.P., J.K., L.H., N.A.P.), Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
bImaging Research Center (M.C., A.B., W.Y.), Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
gDepartment of Pediatrics (L.T., L.H., N.A.P.), University of Cincinnati College of Medicine, Cincinnati, Ohio
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for L. He
N.A. Parikh
aFrom the Perinatal Institute (M.N.P., J.K., L.H., N.A.P.), Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
gDepartment of Pediatrics (L.T., L.H., N.A.P.), University of Cincinnati College of Medicine, Cincinnati, Ohio
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for N.A. Parikh
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Woodward LJ,
    2. Anderson PJ,
    3. Austin NC, et al
    . Neonatal MRI to predict neurodevelopmental outcomes in preterm infants. N Engl J Med 2006;355:685–94 doi:10.1056/NEJMoa053792 pmid:16914704
    CrossRefPubMedWeb of Science
  2. 2.↵
    1. Dyet LE,
    2. Kennea N,
    3. Counsell SJ, et al
    . Natural history of brain lesions in extremely preterm infants studied with serial magnetic resonance imaging from birth and neurodevelopmental assessment. Pediatrics 2006;118:536–48 doi:10.1542/peds.2005-1866 pmid:16882805
    Abstract/FREE Full Text
  3. 3.↵
    1. Hintz SR,
    2. Barnes PD,
    3. Bulas D, et al
    . SUPPORT Study Group of the Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network. Neuroimaging and neurodevelopmental outcome in extremely preterm infants. Pediatrics 2015;135:e32–42 doi:10.1542/peds.2014-0898 pmid:25554820
    Abstract/FREE Full Text
  4. 4.↵
    1. Dudink J,
    2. Kerr JL,
    3. Paterson K, et al
    . Connecting the developing preterm brain. Early Hum Dev 2008;84:777–82 doi:10.1016/j.earlhumdev.2008.09.004 pmid:18835510
    CrossRefPubMedWeb of Science
  5. 5.↵
    1. Qiu A,
    2. Mori S,
    3. Miller MI
    . Diffusion tensor imaging for understanding brain development in early life. Annu Rev Psychol 2015;66:853–76 doi:10.1146/annurev-psych-010814-015340 pmid:25559117
    CrossRefPubMed
  6. 6.↵
    1. Caldinelli C,
    2. Froudist-Walsh S,
    3. Karolis V, et al
    . White matter alterations to cingulum and fornix following very preterm birth and their relationship with cognitive functions. Neuroimage 2017;150:373–82 doi:10.1016/j.neuroimage.2017.02.026
    CrossRef
  7. 7.↵
    1. Adamson C,
    2. Yuan W,
    3. Babcock L, et al
    . Diffusion tensor imaging detects white matter abnormalities and associated cognitive deficits in chronic adolescent TBI. Brain Inj 2013;27:454–63 doi:10.3109/02699052.2012.750756 pmid:23472581
    CrossRefPubMed
  8. 8.↵
    1. Anjari M,
    2. Srinivasan L,
    3. Allsop JM, et al
    . Diffusion tensor imaging with tract-based spatial statistics reveals local white matter abnormalities in preterm infants. Neuroimage 2007;35:1021–27 doi:10.1016/j.neuroimage.2007.01.035 pmid:17344066
    CrossRefPubMedWeb of Science
  9. 9.↵
    1. Myer GD,
    2. Yuan W,
    3. Barber FK, et al
    . The effects of external jugular compression applied during head impact exposure on longitudinal changes in brain neuroanatomical and neurophysiological biomarkers: a preliminary investigation. Front Neurol 2016;7:74 doi:10.3389/fneur.2016.00074 pmid:27375546
    CrossRefPubMed
  10. 10.↵
    1. Van Kooij BJ,
    2. De Vries LS,
    3. Ball G, et al
    . Neonatal tract-based spatial statistics findings and outcome in preterm infants. AJNR Am J Neuroradiol 2012;33:188–94 doi:10.3174/ajnr.A2723 pmid:21998101
    Abstract/FREE Full Text
  11. 11.↵
    1. Yuan W,
    2. Barber Foss KD,
    3. Thomas S, et al
    . White matter alterations over the course of two consecutive high-school football seasons and the effect of a jugular compression collar: a preliminary longitudinal diffusion tensor imaging study. Hum Brain Mapp 2018;39:491–508 doi:10.1002/hbm.23859 pmid:29080230
    CrossRefPubMed
  12. 12.↵
    1. Ball G,
    2. Counsell SJ,
    3. Anjari M, et al
    . An optimised tract-based spatial statistics protocol for neonates: applications to prematurity and chronic lung disease. Neuroimage 2010;53:94–102 doi:10.1016/j.neuroimage.2010.05.055 pmid:20510375
    CrossRefPubMedWeb of Science
  13. 13.↵
    1. Barnett ML,
    2. Tusor N,
    3. Ball G, et al
    . Exploring the multiple-hit hypothesis of preterm white matter damage using diffusion MRI. Neuroimage Clin 2018;17:596–606 doi:10.1016/j.nicl.2017.11.017 pmid:29234596
    CrossRefPubMed
  14. 14.↵
    1. Counsell SJ,
    2. Edwards AD,
    3. Chew AT, et al
    . Specific relations between neurodevelopmental abilities and white matter microstructure in children born preterm. Brain 2008;131:3201–08 doi:10.1093/brain/awn268 pmid:18952670
    CrossRefPubMedWeb of Science
  15. 15.↵
    1. Duerden EG,
    2. Foong J,
    3. Chau V, et al
    . Tract-based spatial statistics in preterm-born neonates predicts cognitive and motor outcomes at 18 months. AJNR Am J Neuroradiol 2015;36:1565–71 doi:10.3174/ajnr.A4312 pmid:25929880
    Abstract/FREE Full Text
  16. 16.↵
    1. Glass TJ,
    2. Chau V,
    3. Grunau RE, et al
    . Multiple postnatal infections in newborns born preterm predict delayed maturation of motor pathways at term-equivalent age with poorer motor outcomes at 3 years. J Pediatr 2018;196:91–97.e1 doi:10.1016/j.jpeds.2017.12.041 pmid:29398063
    CrossRefPubMed
  17. 17.↵
    1. Hollund IM,
    2. Olsen A,
    3. Skranes J, et al
    . White matter alterations and their associations with motor function in young adults born preterm with very low birth weight. Neuroimage Clin 2018;17:241–50 doi:10.1016/j.nicl.2017.10.006 pmid:29159041
    CrossRefPubMed
  18. 18.↵
    1. Merhar SL,
    2. Gozdas E,
    3. Tkach JA, et al
    . Functional and structural connectivity of the visual system in infants with perinatal brain injury. Pediatr Res 2016;80:43–48 doi:10.1038/pr.2016.49 pmid:26991261
    CrossRefPubMed
  19. 19.↵
    1. Mürner-Lavanchy IM,
    2. Kelly CE,
    3. Reidy N, et al
    . White matter microstructure is associated with language in children born very preterm. Neuroimage Clin 2018;20:808–22 doi:10.1016/j.nicl.2018.09.020 pmid:30268990
    CrossRefPubMed
  20. 20.↵
    1. Hack M,
    2. Taylor HG,
    3. Drotar D, et al
    . Poor predictive validity of the Bayley Scales of Infant Development for cognitive function of extremely low birth weight children at school age. Pediatrics 2005;116:333–41 doi:10.1542/peds.2005-0173 pmid:16061586
    Abstract/FREE Full Text
  21. 21.↵
    1. O'Shea TM,
    2. Joseph RM,
    3. Allred EN, et al
    . ELGAN Study Investigators. Accuracy of the Bayley-II mental development index at 2 years as a predictor of cognitive impairment at school age among children born extremely preterm. J Perinatol 2018;38:908–16 doi:10.1038/s41372-017-0020-8 pmid:29808002
    CrossRefPubMed
  22. 22.↵
    1. Spittle AJ,
    2. Spencer-Smith MM,
    3. Eeles AL, et al
    . Does the Bayley-III Motor Scale at 2 years predict motor outcome at 4 years in very preterm children? Dev Med Child Neurol 2013;55:448–52 doi:10.1111/dmcn.12049 pmid:23216518
    CrossRefPubMed
  23. 23.↵
    1. Spencer-Smith MM,
    2. Spittle AJ,
    3. Lee KJ, et al
    . Bayley-III cognitive and language scales in preterm children. Pediatrics 2015;135:e1258–65 doi:10.1542/peds.2014-3039 pmid:25896835
    Abstract/FREE Full Text
  24. 24.↵
    1. Elliott CD
    . Contemporary intellectual assessment: theories, tests, and issues. In: Third. New Guilford Press; 2012:336–56
  25. 25.↵
    1. Fortin JP,
    2. Parker D,
    3. Tunç B, et al
    . Harmonization of multi-site diffusion tensor imaging data. Neuroimage 2017;161:149–70 doi:10.1016/j.neuroimage.2017.08.047 pmid:28826946
    CrossRefPubMed
  26. 26.↵
    1. Johnson WE,
    2. Li C,
    3. Rabinovic A
    . Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 2007;8:118–27 doi:10.1093/biostatistics/kxj037 pmid:16632515
    CrossRefPubMedWeb of Science
  27. 27.↵
    1. Logan JW,
    2. Tan J,
    3. Skalak M, et al
    . Adverse effects of perinatal illness severity on neurodevelopment are partially mediated by early brain abnormalities in infants born very preterm. J Perinatol 2021;41:519–27 doi:10.1038/s41372-020-00854-1 pmid:33028936
    CrossRefPubMed
  28. 28.↵
    1. Kidokoro H,
    2. Neil JJ,
    3. Inder TE
    . New MR imaging assessment tool to define brain abnormalities in very preterm infants at term. AJNR Am J Neuroradiol 2013;34:2208–14 doi:10.3174/ajnr.A3521 pmid:23620070
    Abstract/FREE Full Text
  29. 29.↵
    1. Jobe AH,
    2. Bancalari E
    . Bronchopulmonary dysplasia. Am J Respir Crit Care Med 2001;163:1723–29 doi:10.1164/ajrccm.163.7.2011060 pmid:11401896
    CrossRefPubMed
  30. 30.↵
    International Committee for the Classification of Retinopathy of Prematurity. The international classification of retinopathy of prematurity. Arch Ophthalmol 2005;123:991–99 doi:10.1001/archopht.123.7.991 pmid:16009843
    CrossRefPubMedWeb of Science
  31. 31.↵
    1. Andersson JL,
    2. Sotiropoulos SN
    . An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging. Neuroimage 2016;125:1063–78 doi:10.1016/j.neuroimage.2015.10.019 pmid:26481672
    CrossRefPubMed
  32. 32.↵
    1. Smith SM
    . Fast robust automated brain extraction. Hum Brain Mapp 2002;17:143–55 doi:10.1002/hbm.10062 pmid:12391568
    CrossRefPubMedWeb of Science
  33. 33.↵
    1. Avants BB,
    2. Tustison NJ,
    3. Song G, et al
    . A reproducible evaluation of ANTs similarity metric performance in brain image registration. Neuroimage 2011;54:2033–44 doi:10.1016/j.neuroimage.2010.09.025 pmid:20851191
    CrossRefPubMed
  34. 34.↵
    1. Elliot CD
    . Differential Ability Scales, 2nd ed: Introductory and Technical Handbook. Psychological Corporation; 2007
  35. 35.↵
    1. Bayley NB
    . Bayley Scales of Infant and Toddler Development, 3rd ed: Technical Manual. Psychological Corporation; 2006
  36. 36.↵
    1. Avants BB,
    2. Yushkevich P,
    3. Pluta J, et al
    . The optimal template effect in hippocampus studies of diseased populations. Neuroimage 2010;49:2457–66 doi:10.1016/j.neuroimage.2009.09.062 pmid:19818860
    CrossRefPubMed
  37. 37.↵
    1. Skiöld B,
    2. Alexandrou G,
    3. Padilla N, et al
    . Sex differences in outcome and associations with neonatal brain morphology in extremely preterm children. J Pediatr 2014;164:1012–18 doi:10.1016/j.jpeds.2013.12.051 pmid:24530122
    CrossRefPubMedWeb of Science
  38. 38.↵
    1. McGrew KS
    . CHC theory and the human cognitive abilities project: standing on the shoulders of the giants of psychometric intelligence research. Intelligence 2009;37:1–10 doi:10.1016/j.intell.2008.08.004
    CrossRefWeb of Science
  39. 39.↵
    1. Wahl M,
    2. Li YO,
    3. Ng J, et al
    . Microstructural correlations of white matter tracts in the human brain. Neuroimage 2010;51:531–41 doi:10.1016/j.neuroimage.2010.02.072 pmid:20206699
    CrossRefPubMedWeb of Science
  40. 40.↵
    1. Jiang H,
    2. Li X,
    3. Jin C, et al
    . Early diagnosis of spastic cerebral palsy in infants with periventricular white matter injury using diffusion tensor imaging. AJNR Am J Neuroradiol 2019;40:162–68 doi:10.3174/ajnr.A5914 pmid:30545838
    Abstract/FREE Full Text
  41. 41.↵
    1. Parikh NA,
    2. Hershey A,
    3. Altaye M
    . Early detection of cerebral palsy using sensorimotor tract biomarkers in very preterm infants. Pediatr Neurol 2019;98:53–60 doi:10.1016/j.pediatrneurol.2019.05.001 pmid:31201071
    CrossRefPubMed
  42. 42.↵
    1. Thomas B,
    2. Eyssen M,
    3. Peeters R, et al
    . Quantitative diffusion tensor imaging in cerebral palsy due to periventricular white matter injury. Brain 2005;128:2562–77 doi:10.1093/brain/awh600 pmid:16049045
    CrossRefPubMedWeb of Science
  43. 43.↵
    1. Arrigoni F,
    2. Peruzzo D,
    3. Gagliardi C, et al
    . Whole-brain DTI assessment of white matter damage in children with bilateral cerebral palsy: evidence of involvement beyond the primary target of the anoxic insult. AJNR Am J Neuroradiol 2016;37:1347–53 doi:10.3174/ajnr.A4717 pmid:26988814
    Abstract/FREE Full Text
  44. 44.↵
    1. Månsson J,
    2. Stjernqvist K,
    3. Serenius F, et al
    . Agreement between Bayley-III measurements and WISC-IV measurements in typically developing children. J Psychoeduc Assess 2019;37:603–16 doi:10.1177/0734282918781431
    CrossRef
  45. 45.↵
    1. Jary S,
    2. Whitelaw A,
    3. Walløe L, et al
    . Comparison of Bayley-2 and Bayley-3 scores at 18 months in term infants following neonatal encephalopathy and therapeutic hypothermia. Dev Med Child Neurol 2013;55:1053–9 doi:10.1111/dmcn.12208 pmid:23927586
    CrossRefPubMed
  46. 46.↵
    1. Sharp M,
    2. DeMauro SB
    . Counterbalanced comparison of the BSID-II and Bayley-III at Eighteen to Twenty-two months corrected age. J Dev Behav Pediatr 2017;38:322–9 doi:10.1097/DBP.0000000000000441 pmid:28538042
    CrossRefPubMed
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 42 (8)
American Journal of Neuroradiology
Vol. 42, Issue 8
1 Aug 2021
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Diffusion MRI Microstructural Abnormalities at Term-Equivalent Age Are Associated with Neurodevelopmental Outcomes at 3 Years of Age in Very Preterm Infants
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
M.N. Parikh, M. Chen, A. Braimah, J. Kline, K. McNally, J.W. Logan, L. Tamm, K.O. Yeates, W. Yuan, L. He, N.A. Parikh
Diffusion MRI Microstructural Abnormalities at Term-Equivalent Age Are Associated with Neurodevelopmental Outcomes at 3 Years of Age in Very Preterm Infants
American Journal of Neuroradiology Aug 2021, 42 (8) 1535-1542; DOI: 10.3174/ajnr.A7135

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Diffusion MRI Microstructural Abnormalities at Term-Equivalent Age Are Associated with Neurodevelopmental Outcomes at 3 Years of Age in Very Preterm Infants
M.N. Parikh, M. Chen, A. Braimah, J. Kline, K. McNally, J.W. Logan, L. Tamm, K.O. Yeates, W. Yuan, L. He, N.A. Parikh
American Journal of Neuroradiology Aug 2021, 42 (8) 1535-1542; DOI: 10.3174/ajnr.A7135
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • ACKNOWLEDGMENTS
    • Footnotes
    • References
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • Associations between prenatal adversity and neonatal white matter microstructure on language outcomes at age 2 years
  • Harmonizing multisite neonatal diffusion-weighted brain MRI data for developmental neuroscience
  • Corpus callosum abnormalities at term-equivalent age are associated with language development at two years corrected age in infants born very preterm
  • Early structural connectivity within the sensorimotor network: deviations related to prematurity and association to neurodevelopmental outcome
  • Crossref (10)
  • Google Scholar

This article has been cited by the following articles in journals that are participating in Crossref Cited-by Linking.

  • Arachidonic and docosahexaenoic acid supplementation and brain maturation in preterm infants; a double blind RCT
    Sissel J. Moltu, Tone Nordvik, Madelaine E. Rossholt, Kristina Wendel, Maninder Chawla, Andres Server, Gunnthorunn Gunnarsdottir, Are Hugo Pripp, Magnus Domellöf, Marianne Bratlie, Marlen Aas, Petra S. Hüppi, Alexandre Lapillonne, Mona K. Beyer, Tom Stiris, Ivan I. Maximov, Oliver Geier, Helle Pfeiffer
    Clinical Nutrition 2024 43 1
  • Bio-psycho-social factors’ associations with brain age: a large-scale UK Biobank diffusion study of 35,749 participants
    Max Korbmacher, Tiril P. Gurholt, Ann-Marie G. de Lange, Dennis van der Meer, Dani Beck, Eli Eikefjord, Arvid Lundervold, Ole A. Andreassen, Lars T. Westlye, Ivan I. Maximov
    Frontiers in Psychology 2023 14
  • Effects of gestational age at birth on perinatal structural brain development in healthy term‐born babies
    Oliver Gale‐Grant, Sunniva Fenn‐Moltu, Lucas G. S. França, Ralica Dimitrova, Daan Christiaens, Lucilio Cordero‐Grande, Andrew Chew, Shona Falconer, Nicholas Harper, Anthony N. Price, Jana Hutter, Emer Hughes, Jonathan O'Muircheartaigh, Mary Rutherford, Serena J. Counsell, Daniel Rueckert, Chiara Nosarti, Joseph V. Hajnal, Grainne McAlonan, Tomoki Arichi, A. David Edwards, Dafnis Batalle
    Human Brain Mapping 2022 43 5
  • Early structural connectivity within the sensorimotor network: Deviations related to prematurity and association to neurodevelopmental outcome
    Sara Neumane, Andrea Gondova, Yann Leprince, Lucie Hertz-Pannier, Tomoki Arichi, Jessica Dubois
    Frontiers in Neuroscience 2022 16
  • A Semi-Supervised Graph Convolutional Network for Early Prediction of Motor Abnormalities in Very Preterm Infants
    Hailong Li, Zhiyuan Li, Kevin Du, Yu Zhu, Nehal A. Parikh, Lili He
    Diagnostics 2023 13 8
  • Structural connectivity at term equivalent age and language in preterm children at 2 years corrected
    Maria E Barnes-Davis, Brady J Williamson, Julia E Kline, Beth M Kline-Fath, Jean Tkach, Lili He, Weihong Yuan, Nehal A Parikh
    Brain Communications 2024 6 2
  • An MRI evaluation of white matter involvement in paradigmatic forms of spastic ataxia: results from the multi-center PROSPAX study
    Alessandra Scaravilli, Ilaria Gabusi, Gaia Mari, Matteo Battocchio, Sara Bosticardo, Simona Schiavi, Benjamin Bender, Christoph Kessler, Bernard Brais, Roberta La Piana, Bart P. van de Warrenburg, Mirco Cosottini, Dagmar Timmann, Alessandro Daducci, Rebecca Schüle, Matthis Synofzik, Filippo Maria Santorelli, Sirio Cocozza
    Journal of Neurology 2024 271 8
  • Corpus Callosum Abnormalities at Term-Equivalent Age Are Associated with Language Development at 2 Years’ Corrected Age in Infants Born Very Preterm
    Katsuaki Kojima, Julia E. Kline, Mekibib Altaye, Beth M. Kline-Fath, Nehal A. Parikh, Armin Allahverdy, Mekibib Altaye, Anita Arnsperger, Traci Beiersdorfer, Kaley Bridgewater, Tanya Cahill, Kim Cecil, Kent Dietrich, Christen Distler, Juanita Dudley, Brianne Georg, Meredith Glover, Cathy Grisby, Lacey Haas, Karen Harpster, Lili He, Scott K. Holland, V.S. Priyanka Illapani, Kristin Kirker, Julia E. Kline, Beth M. Kline-Fath, Hailong Li, Matt Lanier, Stephanie L. Merhar, Greg Muthig, Brenda B. Poindexter, David Russell, Kar Tepe, Leanne Tamm, Julia Thompson, Jean A. Tkach, Hui Wang, Jinghua Wang, Brynne Williams, Kelsey Wineland, Sandra Wuertz, Donna Wuest, Weihong Yuan
    The Journal of Pediatrics: Clinical Practice 2024 11
  • Harmonizing multisite neonatal diffusion-weighted brain MRI data for developmental neuroscience
    Alexandra F. Bonthrone, Manuel Blesa Cábez, A. David Edwards, Jo V. Hajnal, Serena J. Counsell, James P. Boardman
    Developmental Cognitive Neuroscience 2025 71
  • Prenatal Adversity and Neonatal White Matter Microstructure Independently Relate to Language Outcomes at Age 2 Years
    Jacob Bjork, Jeanette K. Kenley, Caleb Gardner, Aidan Latham, Tara A. Smyser, J. Philip Miller, Joshua S. Shimony, Jeffrey J. Neil, Barbara B. Warner, Joan L. Luby, Deanna M. Barch, Cynthia E. Rogers, Christopher D. Smyser, Rachel E. Lean
    The Journal of Pediatrics 2025 285

More in this TOC Section

Pediatrics

  • Comparison of Image Quality and Radiation Dose in Pediatric Temporal Bone CT Using Photon-Counting Detector CT and Energy-Integrating Detector CT
  • SyMRI & MR Fingerprinting in Brainstem Myelination
  • Dandy-Walker Phenotype with Brainstem Involvement
Show more Pediatrics

Functional

  • Glutaric Aciduria Type 1: DK vs. Conventional MRI
  • Kurtosis and Epileptogenic Tubers: A Pilot Study
  • Brain Iron in Niemann-Pick Type C: 7T Study
Show more Functional

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editors Choice
  • Fellow Journal Club
  • Letters to the Editor

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

Special Collections

  • Special Collections

Resources

  • News and Updates
  • Turn around Times
  • Submit a Manuscript
  • Author Policies
  • Manuscript Submission Guidelines
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Submit a Case
  • Become a Reviewer/Academy of Reviewers
  • Get Peer Review Credit from Publons

Multimedia

  • AJNR Podcast
  • AJNR SCANtastic
  • Video Articles

About Us

  • About AJNR
  • Editorial Board
  • Not an AJNR Subscriber? Join Now
  • Alerts
  • Feedback
  • Advertise with us
  • Librarian Resources
  • Permissions
  • Terms and Conditions

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire