Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • AJNR Case Collection
    • Case of the Week Archive
    • Classic Case Archive
    • Case of the Month Archive
  • Special Collections
    • Spinal CSF Leak Articles (Jan 2020-June 2024)
    • 2024 AJNR Journal Awards
    • Most Impactful AJNR Articles
  • Multimedia
    • AJNR Podcast
    • AJNR Scantastics
    • Video Articles
  • For Authors
    • Submit a Manuscript
    • Author Policies
    • Fast publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Manuscript Submission Guidelines
    • Imaging Protocol Submission
    • Submit a Case for the Case Collection
  • About Us
    • About AJNR
    • Editorial Board
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Other Publications
    • ajnr

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • AJNR Case Collection
    • Case of the Week Archive
    • Classic Case Archive
    • Case of the Month Archive
  • Special Collections
    • Spinal CSF Leak Articles (Jan 2020-June 2024)
    • 2024 AJNR Journal Awards
    • Most Impactful AJNR Articles
  • Multimedia
    • AJNR Podcast
    • AJNR Scantastics
    • Video Articles
  • For Authors
    • Submit a Manuscript
    • Author Policies
    • Fast publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Manuscript Submission Guidelines
    • Imaging Protocol Submission
    • Submit a Case for the Case Collection
  • About Us
    • About AJNR
    • Editorial Board
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

Welcome to the new AJNR, Updated Hall of Fame, and more. Read the full announcements.


AJNR is seeking candidates for the position of Associate Section Editor, AJNR Case Collection. Read the full announcement.

 

Getting new auth cookie, if you see this message a lot, tell someone!
Research ArticlePediatrics
Open Access

Quantitative Diffusion and Spectroscopic Neuroimaging Combined with a Novel Early-Developmental Assessment Improves Models for 1-Year Developmental Outcomes

H.G. Moss, L.G. Wolf, P. Coker-Bolt, V. Ramakrishnan, T. Aljuhani, M. Yazdani, T.R. Brown, J.H. Jensen and D.D. Jenkins
American Journal of Neuroradiology January 2022, 43 (1) 139-145; DOI: https://doi.org/10.3174/ajnr.A7370
H.G. Moss
aFrom the Department of Neuroscience (H.G.M., J.H.J.)
bCenter for Biomedical Imaging (H.G.M., T.R.B., J.H.J., D.D.J.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for H.G. Moss
L.G. Wolf
cDepartment of Pediatrics (L.G.W., D.D.J.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for L.G. Wolf
P. Coker-Bolt
dDivision of Occupational Therapy (P.C.-B., T.A.), College of Health Sciences
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
V. Ramakrishnan
eDivision of Public Health Sciences (V.R., T.A.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
T. Aljuhani
dDivision of Occupational Therapy (P.C.-B., T.A.), College of Health Sciences
eDivision of Public Health Sciences (V.R., T.A.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for T. Aljuhani
M. Yazdani
fDepartment of Radiology and Radiological Science (M.Y., T.R.B., J.H.J.), Medical University of South Carolina, Charleston, South Carolina
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for M. Yazdani
T.R. Brown
bCenter for Biomedical Imaging (H.G.M., T.R.B., J.H.J., D.D.J.)
fDepartment of Radiology and Radiological Science (M.Y., T.R.B., J.H.J.), Medical University of South Carolina, Charleston, South Carolina
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for T.R. Brown
J.H. Jensen
aFrom the Department of Neuroscience (H.G.M., J.H.J.)
bCenter for Biomedical Imaging (H.G.M., T.R.B., J.H.J., D.D.J.)
fDepartment of Radiology and Radiological Science (M.Y., T.R.B., J.H.J.), Medical University of South Carolina, Charleston, South Carolina
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for J.H. Jensen
D.D. Jenkins
bCenter for Biomedical Imaging (H.G.M., T.R.B., J.H.J., D.D.J.)
cDepartment of Pediatrics (L.G.W., D.D.J.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for D.D. Jenkins
  • Article
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Lean RE,
    2. Han RH,
    3. Smyser TA, et al
    . Altered neonatal white and gray matter microstructure is associated with neurodevelopmental impairments in very preterm infants with high-grade brain injury. Pediatr Res 2019;86:365–74 doi:10.1038/s41390-019-0461-1 pmid:31212303
    CrossRefPubMed
  2. 2.↵
    1. Back SA,
    2. Miller SP
    . Brain injury in premature neonates: a primary cerebral dysmaturation disorder? Ann Neurol 2014;75:469–86 doi:10.1002/ana.24132 pmid:24615937
    CrossRefPubMed
  3. 3.↵
    1. Duerden EG,
    2. Foong J,
    3. Chau V, et al
    . Tract-based spatial statistics in preterm-born neonates predicts cognitive and motor outcomes at 18 months. AJNR Am J Neuroradiol 2015;36:1565–71 doi:10.3174/ajnr.A4312 pmid:25929880
    Abstract/FREE Full Text
  4. 4.↵
    1. Coker-Bolt P,
    2. Barbour A,
    3. Moss H, et al
    . Correlating early motor skills to white matter abnormalities in preterm infants using diffusion tensor imaging. J Pediatr Rehabil Med 2016;9:185–93 doi:10.3233/PRM-160380 pmid:27612078
    CrossRefPubMed
  5. 5.↵
    1. Coker-Bolt P,
    2. Woodbury ML,
    3. Perkel J, et al
    . Identifying premature infants at high and low risk for motor delays using motor performance testing and MRS. J Pediatr Rehabil Med 2014;7:219–32 doi:10.3233/PRM-140291 pmid:25260505
    CrossRefPubMed
  6. 6.↵
    1. Gower L,
    2. Jenkins D,
    3. Fraser JL, et al
    . Early developmental assessment with a short screening test, the STEP, predicts one-year outcomes. J Perinatol 2019;39:184–92 doi:10.1038/s41372-018-0234-4 pmid:30301940
    CrossRefPubMed
  7. 7.↵
    1. Novak I,
    2. Morgan C,
    3. Adde L, et al
    . Early, accurate diagnosis and early intervention in cerebral palsy: advances in diagnosis and treatment. JAMA Pediatr 2017;171:897–907 doi:10.1001/jamapediatrics.2017.1689 pmid:28715518
    CrossRefPubMed
  8. 8.↵
    1. Chau V,
    2. Synnes A,
    3. Grunau RE, et al
    . Abnormal brain maturation in preterm neonates associated with adverse developmental outcomes. Neurology 2013;81:2082–89 doi:10.1212/01.wnl.0000437298.43688.b9 pmid:24212394
    Abstract/FREE Full Text
  9. 9.↵
    1. Kreis R,
    2. Hofmann L,
    3. Kuhlmann B, et al
    . Brain metabolite composition during early human brain development as measured by quantitative in vivo 1H magnetic resonance spectroscopy. Magn Reson Med 2002;48:949–58 doi:10.1002/mrm.10304 pmid:12465103
    CrossRefPubMedWeb of Science
  10. 10.↵
    1. Tanifuji S,
    2. Akasaka M,
    3. Kamei A, et al
    . Temporal brain metabolite changes in preterm infants with normal development. Brain Dev 2017;39:196–202 doi:10.1016/j.braindev.2016.10.006 pmid:27838187
    CrossRefPubMed
  11. 11.↵
    1. Kendall GS,
    2. Melbourne A,
    3. Johnson S, et al
    . White matter NAA/Cho and Cho/Cr ratios at MR spectroscopy are predictive of motor outcome in preterm infants. Radiology 2014;271:230–38 doi:10.1148/radiol.13122679 pmid:24475798
    CrossRefPubMed
  12. 12.↵
    1. Lally PJ,
    2. Montaldo P,
    3. Oliveira V, et al
    . MARBLE consortium magnetic resonance spectroscopy assessment of brain injury after moderate hypothermia in neonatal encephalopathy: a prospective multicentre cohort study. Lancet Neurol 2019;18:35–45 doi:10.1016/S1474-4422(18)30325-9 pmid:30447969
    CrossRefPubMed
  13. 13.↵
    1. Jensen JH,
    2. Helpern JA
    . MRI quantification of non-Gaussian water diffusion by kurtosis analysis. NMR Biomed 2010;23:698–710 doi:10.1002/nbm.1518 pmid:20632416
    CrossRefPubMedWeb of Science
  14. 14.↵
    1. Basser PJ,
    2. Mattiello J,
    3. LeBihan D
    . MR diffusion tensor spectroscopy and imaging. Biophys J 1994;66:259–67 doi:10.1016/S0006-3495(94)80775-1 pmid:8130344
    CrossRefPubMedWeb of Science
  15. 15.↵
    1. Jensen JH,
    2. Helpern JA,
    3. Ramani A, et al
    . Diffusional kurtosis imaging: the quantification of non-Gaussian water diffusion by means of magnetic resonance imaging. Magn Reson Med 2005;53:1432–40 doi:10.1002/mrm.20508 pmid:15906300
    CrossRefPubMedWeb of Science
  16. 16.↵
    1. Steven AJ,
    2. Zhuo J,
    3. Melhem ER
    . Diffusion kurtosis imaging: an emerging technique for evaluating the microstructural environment of the brain. AJR Am J Roentgenol 2014;202:W26–33 doi:10.2214/AJR.13.11365 pmid:24370162
    CrossRefPubMedWeb of Science
  17. 17.↵
    1. Galdi P,
    2. Blesa M,
    3. Stoye DQ, et al
    . Neonatal morphometric similarity mapping for predicting brain age and characterizing neuroanatomic variation associated with preterm birth. Neuroimage Clin 2020;25:102195 doi:10.1016/j.nicl.2020.102195 pmid:32044713
    CrossRefPubMed
  18. 18.↵
    1. Gao J,
    2. Li X,
    3. Li Y, et al
    . Differentiating T2 hyperintensity in neonatal white matter by two-compartment model of diffusional kurtosis imaging. Sci Rep 2016;6:24473 doi:10.1038/srep24473 pmid:27075248
    CrossRefPubMed
  19. 19.↵
    1. Paydar A,
    2. Fieremans E,
    3. Nwankwo JI, et al
    . Diffusional kurtosis imaging of the developing brain. AJNR Am J Neuroradiol 2014;35:808–14 doi:10.3174/ajnr.A3764 pmid:24231848
    Abstract/FREE Full Text
  20. 20.↵
    1. Shi J,
    2. Chang L,
    3. Wang J, et al
    . Initial application of diffusional kurtosis imaging in evaluating brain development of healthy preterm infants. PLoS One 2016;11:e0154146 doi:10.1371/journal.pone.0154146 pmid:27101246
    CrossRefPubMed
  21. 21.↵
    1. Shi J,
    2. Yang S,
    3. Wang J, et al
    . Detecting normal pediatric brain development with diffusional kurtosis imaging. Eur J Radiol 2019;120:108690 doi:10.1016/j.ejrad.2019.108690 pmid:31605964
    CrossRefPubMed
  22. 22.↵
    1. Duncan AF,
    2. Bann C,
    3. Boatman C, et al
    . NICHD Neonatal Research Network: do currently recommended Bayley-III cutoffs overestimate motor impairment in infants born <27 weeks gestation? J Perinatol 2015;35:516–21 doi:10.1038/jp.2014.243 pmid:25634519
    CrossRefPubMed
  23. 23.↵
    1. Vohr BR,
    2. Stephens BE,
    3. Higgins RD, et al
    . NICHD Neonatal Research Network: are outcomes of extremely preterm infants improving? Impact of Bayley assessment on outcomes. J Pediatr 2012;161:222–28 doi:10.1016/j.jpeds.2012.01.057 pmid:22421261
    CrossRefPubMedWeb of Science
  24. 24.↵
    1. Bentzley JP,
    2. Coker-Bolt P,
    3. Moreau NG, et al
    . Kinematic measurement of 12-week head control correlates with 12-month neurodevelopment in preterm infants. Early Hum Dev 2015;91:159–64 doi:10.1016/j.earlhumdev.2015.01.001
    CrossRef
  25. 25.↵
    1. Provencher SW
    . Automatic quantitation of localized in vivo 1H spectra with LCModel. NMR Biomed 2001;14:260–64 doi:10.1002/nbm.698 pmid:11410943
    CrossRefPubMedWeb of Science
  26. 26.↵
    1. Moss HG,
    2. Jenkins DD,
    3. Yazdani M, et al
    . Identifying the translational complexity of magnetic resonance spectroscopy in neonates and infants. NMR Biomed 2019;32:e4089 doi:10.1002/nbm.4089 pmid:30924565
    CrossRefPubMed
  27. 27.↵
    1. Soher BJ,
    2. Todd PS,
    3. Steinburg J, et al
    . VeSPA: integrated applications for RF pulse design, spectral simulation and MRS data analysis. In: Proceedings of the Annual Meeting of the International Society for Magnetic Resonance in Medicine, Montreal, Quebec, Canada; May 7–13, 2011
  28. 28.↵
    1. Ades-Aron B,
    2. Veraart J,
    3. Kochunov P, et al
    . Evaluation of the accuracy and precision of the diffusion parameter EStImation with Gibbs and NoisE removal pipeline. Neuroimage 2018;183:532–43 doi:10.1016/j.neuroimage.2018.07.066 pmid:30077743
    CrossRefPubMed
  29. 29.↵
    1. Veraart J,
    2. Novikov DS,
    3. Christiaens D, et al
    . Denoising of diffusion MRI using random matrix theory. Neuroimage 2016;142:394–406 doi:10.1016/j.neuroimage.2016.08.016 pmid:27523449
    CrossRefPubMed
  30. 30.↵
    1. Kellner E,
    2. Dhital B,
    3. Kiselev VG, et al
    . Gibbs-ringing artifact removal based on local subvoxel-shifts. Magn Reson Med 2016;76:1574–81 doi:10.1002/mrm.26054 pmid:26745823
    CrossRefPubMed
  31. 31.↵
    1. Andersson JL,
    2. Graham MS,
    3. Zsoldos E, et al
    . Incorporating outlier detection and replacement into a non-parametric framework for movement and distortion correction of diffusion MR images. Neuroimage 2016;141:556–72 doi:10.1016/j.neuroimage.2016.06.058 pmid:27393418
    CrossRefPubMed
  32. 32.↵
    1. Andersson JL,
    2. Sotiropoulos SN
    . An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging. Neuroimage 2016;125:1063–78 doi:10.1016/j.neuroimage.2015.10.019 pmid:26481672
    CrossRefPubMed
  33. 33.↵
    1. Tabesh A,
    2. Jensen JH,
    3. Ardekani BA, et al
    . Estimation of tensors and tensor-derived measures in diffusional kurtosis imaging. Magn Reson Med 2011;65:823–36 doi:10.1002/mrm.22655 pmid:21337412
    CrossRefPubMed
  34. 34.↵
    1. Gudbjartsson H,
    2. Patz S
    . The Rician distribution of noisy MRI data. Magn Reson Med 1995;34:910–14 doi:10.1002/mrm.1910340618 pmid:8598820
    CrossRefPubMedWeb of Science
  35. 35.↵
    1. Veraart J,
    2. Sijbers J,
    3. Sunaert S, et al
    . Weighted linear least squares estimation of diffusion MRI parameters: strengths, limitations, and pitfalls. Neuroimage 2013;81:335–46 doi:10.1016/j.neuroimage.2013.05.028 pmid:23684865
    CrossRefPubMed
  36. 36.↵
    1. Glenn GR,
    2. Helpern JA,
    3. Tabesh A, et al
    . Quantitative assessment of diffusional kurtosis anisotropy. NMR Biomed 2015;28:448–59 doi:10.1002/nbm.3271 pmid:25728763
    CrossRefPubMed
  37. 37.↵
    1. Hansen B,
    2. Jespersen SN
    . Kurtosis fractional anisotropy, its contrast and estimation by proxy. Sci Rep 2016;6:23999 doi:10.1038/srep23999 pmid:27041679
    CrossRefPubMed
  38. 38.↵
    1. Hansen B
    . An introduction to kurtosis fractional anisotropy. AJNR Am J Neuroradiol 2019;40:1638–41 doi:10.3174/ajnr.A6235 pmid:31558496
    FREE Full Text
  39. 39.↵
    1. Hui ES,
    2. Glenn RG,
    3. Helpern JA, et al
    . Kurtosis analysis of neural diffusion organization. Neuroimage 2015;106:391–403 doi:10.1016/j.neuroimage.2014.11.015 pmid:25463453
    CrossRefPubMed
  40. 40.↵
    1. Akaike H
    . Likelihood of a model and information criteria. J Econometrics 1981;16:3–14 doi:10.1016/0304-4076(81)90071-3
    CrossRefWeb of Science
  41. 41.↵
    1. Burnham KP,
    2. Anderson DR
    . Multimodel inference. Sociological Methods & Research 2004;33:261–304 doi:10.1177/0049124104268644
    CrossRefPubMedWeb of Science
  42. 42.↵
    1. Urenjak J,
    2. Williams SR,
    3. Gadian DG, et al
    . Proton nuclear magnetic resonance spectroscopy unambiguously identifies different neural cell types. J Neurosci 1993;13:981–89 doi:10.1523/JNEUROSCI.13-03-00981.1993 pmid:8441018
    Abstract/FREE Full Text
  43. 43.↵
    1. Schuff N,
    2. Meyerhoff DJ,
    3. Mueller S, et al
    . NAA as a marker of neuronal injury in neurodegenerative disease. Adv Exp Med Biol 2006;576:241–62 doi:10.1007/0-387-30172-0_17 pmid:16802717
    CrossRefPubMed
  44. 44.↵
    1. Moffett JR,
    2. Arun P,
    3. Ariyannur PS, et al
    . NAA reductions in brain injury: impact on post-injury neuroenergetics, lipid synthesis, and protein acetylation. Front Neuroenergetics 2013;5:11 doi:10.3389/fnene.2013.00011 pmid:24421768
    CrossRefPubMed
  45. 45.↵
    1. Gadin E,
    2. Lobo M,
    3. Paul DA, et al
    . Volumetric MRI and MRS and early motor development of infants born preterm. Pediatr Phys Ther 2012;24:38–44 doi:10.1097/PEP.0b013e31823e069d pmid:22207464
    CrossRefPubMed
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 43 (1)
American Journal of Neuroradiology
Vol. 43, Issue 1
1 Jan 2022
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Quantitative Diffusion and Spectroscopic Neuroimaging Combined with a Novel Early-Developmental Assessment Improves Models for 1-Year Developmental Outcomes
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
H.G. Moss, L.G. Wolf, P. Coker-Bolt, V. Ramakrishnan, T. Aljuhani, M. Yazdani, T.R. Brown, J.H. Jensen, D.D. Jenkins
Quantitative Diffusion and Spectroscopic Neuroimaging Combined with a Novel Early-Developmental Assessment Improves Models for 1-Year Developmental Outcomes
American Journal of Neuroradiology Jan 2022, 43 (1) 139-145; DOI: 10.3174/ajnr.A7370

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Quantitative Diffusion and Spectroscopic Neuroimaging Combined with a Novel Early-Developmental Assessment Improves Models for 1-Year Developmental Outcomes
H.G. Moss, L.G. Wolf, P. Coker-Bolt, V. Ramakrishnan, T. Aljuhani, M. Yazdani, T.R. Brown, J.H. Jensen, D.D. Jenkins
American Journal of Neuroradiology Jan 2022, 43 (1) 139-145; DOI: 10.3174/ajnr.A7370
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Crossref (2)
  • Google Scholar

This article has been cited by the following articles in journals that are participating in Crossref Cited-by Linking.

  • Predicting neurodevelopmental outcomes in preterm infants: A comprehensive evaluation of neonatal and maternal risk factors
    Raheleh Faramarzi, Azadeh Darabi, Maryam Emadzadeh, Gholamali Maamouri, Reyhane Rezvani
    Early Human Development 2023 184
  • Dataset on neonatal and maternal factors influencing neurodevelopmental outcomes in preterm infants: A study focused on the healthcare context of Mashhad, Iran
    Azadeh Darabi, Raheleh Faramarzi, Hassan Boskabadi, Gholamali Maamouri, Reyhane Rezvani
    Data in Brief 2024 53

More in this TOC Section

Pediatrics

  • SyMRI & MR Fingerprinting in Brainstem Myelination
  • Comparison of Image Quality and Radiation Dose in Pediatric Temporal Bone CT Using Photon-Counting Detector CT and Energy-Integrating Detector CT
  • Pons&Vermis Localization on Fetal MRI Using U-Net
Show more Pediatrics

Functional

  • Glutaric Aciduria Type 1: DK vs. Conventional MRI
  • Kurtosis and Epileptogenic Tubers: A Pilot Study
  • Brain Iron in Niemann-Pick Type C: 7T Study
Show more Functional

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editors Choice
  • Fellow Journal Club
  • Letters to the Editor

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

Special Collections

  • Special Collections

Resources

  • News and Updates
  • Turn around Times
  • Submit a Manuscript
  • Author Policies
  • Manuscript Submission Guidelines
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Submit a Case
  • Become a Reviewer/Academy of Reviewers
  • Get Peer Review Credit from Publons

Multimedia

  • AJNR Podcast
  • AJNR SCANtastic
  • Video Articles

About Us

  • About AJNR
  • Editorial Board
  • Not an AJNR Subscriber? Join Now
  • Alerts
  • Feedback
  • Advertise with us
  • Librarian Resources
  • Permissions
  • Terms and Conditions

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire