Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Research ArticleAdult Brain
Open Access

Deep Learning of Time–Signal Intensity Curves from Dynamic Susceptibility Contrast Imaging Enables Tissue Labeling and Prediction of Survival in Glioblastoma

J. Yun, S. Yun, J.E. Park, E.-N. Cheong, S.Y. Park, N. Kim and H.S. Kim
American Journal of Neuroradiology May 2023, 44 (5) 543-552; DOI: https://doi.org/10.3174/ajnr.A7853
J. Yun
aFrom the Departments of Convergence Medicine (J.Y., N.K.)
bRadiology and Research Institute of Radiology (J.Y., J.E.P., N.K., H.S.K.), Asan Medical Center
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for J. Yun
S. Yun
dDepartment of Radiology (S.Y.), Busan Paik Hospital, Inje University College of Medicine, Busan, Korea
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for S. Yun
J.E. Park
bRadiology and Research Institute of Radiology (J.Y., J.E.P., N.K., H.S.K.), Asan Medical Center
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for J.E. Park
E.-N. Cheong
cMedical Science and Asan Medical Institute of Convergence Science and Technology (E.-N.C.), University of Ulsan College of Medicine, Seoul, Korea
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for E.-N. Cheong
S.Y. Park
eDepartment of Statistics and Data Science (S.Y.P.), Korea National Open University, Seoul, Korea
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for S.Y. Park
N. Kim
aFrom the Departments of Convergence Medicine (J.Y., N.K.)
bRadiology and Research Institute of Radiology (J.Y., J.E.P., N.K., H.S.K.), Asan Medical Center
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for N. Kim
H.S. Kim
bRadiology and Research Institute of Radiology (J.Y., J.E.P., N.K., H.S.K.), Asan Medical Center
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for H.S. Kim
  • Article
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Friedmann-Morvinski D
    . Glioblastoma heterogeneity and cancer cell plasticity. Crit Rev Oncog 2014;19:327–36 doi:10.1615/critrevoncog.2014011777 pmid:25404148
    CrossRefPubMed
  2. 2.↵
    1. Qazi MA,
    2. Vora P,
    3. Venugopal C, et al
    . Intratumoral heterogeneity: pathways to treatment resistance and relapse in human glioblastoma. Ann Oncol 2017;28:1448–56 doi:10.1093/annonc/mdx169 pmid:28407030
    CrossRefPubMed
  3. 3.↵
    1. Das S,
    2. Marsden PA
    . Angiogenesis in glioblastoma. N Engl J Med 2013;369:1561–63 doi:10.1056/NEJMcibr1309402 pmid:24131182
    CrossRefPubMed
  4. 4.↵
    1. Hardee ME,
    2. Zagzag D
    . Mechanisms of glioma-associated neovascularization. Am J Pathol 2012;181:1126–41 doi:10.1016/j.ajpath.2012.06.030 pmid:22858156
    CrossRefPubMedWeb of Science
  5. 5.↵
    1. Jo SW,
    2. Choi SH,
    3. Lee EJ, et al
    . Prognostic prediction based on dynamic contrast-enhanced MRI and dynamic susceptibility contrast-enhanced MRI parameters from non-enhancing, T2-high-signal-intensity lesions in patients with glioblastoma. Korean J Radiol 2021;22:1369 doi:10.3348/kjr.2020.1272 pmid:33987994
    CrossRefPubMed
  6. 6.↵
    1. Kelly PJ,
    2. Daumas-Duport C,
    3. Kispert DB, et al
    . Imaging-based stereotaxic serial biopsies in untreated intracranial glial neoplasms. J Neurosurg 1987;66:865–74 doi:10.3171/jns.1987.66.6.0865 pmid:3033172
    CrossRefPubMedWeb of Science
  7. 7.↵
    1. Zhang J,
    2. Liu H,
    3. Tong H, et al
    . Clinical applications of contrast-enhanced perfusion MRI techniques in gliomas: recent advances and current challenges. Contrast Media Mol Imaging 2017;2017:7064120 doi:10.1155/2017/7064120 pmid:29097933
    CrossRefPubMed
  8. 8.↵
    1. Kickingereder P,
    2. Wiestler B,
    3. Burth S, et al
    . Relative cerebral blood volume is a potential predictive imaging biomarker of bevacizumab efficacy in recurrent glioblastoma. Neuro Oncol 2015;17:1139–47 doi:10.1093/neuonc/nov028 pmid:25754089
    CrossRefPubMed
  9. 9.↵
    1. Law M,
    2. Young RJ,
    3. Babb JS, et al
    . Gliomas: predicting time to progression or survival with cerebral blood volume measurements at dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. Radiology 2008;247:490–98 doi:10.1148/radiol.2472070898 pmid:18349315
    CrossRefPubMedWeb of Science
  10. 10.↵
    1. Juan-Albarracín J,
    2. Fuster-Garcia E,
    3. Pérez-Girbés A, et al
    . Glioblastoma: vascular habitats detected at preoperative dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging predict survival. Radiology 2018;287:944–54 doi:10.1148/radiol.2017170845 pmid:29357274
    CrossRefPubMed
  11. 11.↵
    1. Jain R,
    2. Poisson LM,
    3. Gutman D, et al
    . Outcome prediction in patients with glioblastoma by using imaging, clinical, and genomic biomarkers: focus on the nonenhancing component of the tumor. Radiology 2014;272:484–93 doi:10.1148/radiol.14131691 pmid:24646147
    CrossRefPubMed
  12. 12.↵
    1. Park JE,
    2. Kim HS,
    3. Lee J, et al
    . Deep-learned time–signal intensity pattern analysis using an autoencoder captures magnetic resonance perfusion heterogeneity for brain tumor differentiation. Sci Rep 2020;10:1–11 doi:10.1038/s41598-020-78485-x pmid:33293590
    CrossRefPubMed
  13. 13.↵
    1. Creswell A,
    2. Bharath AA
    . Denoising adversarial autoencoders. IEEE Trans Neural Netw Learn Syst 2019;30:968–84 doi:10.1109/TNNLS.2018.2852738 pmid:30130236
    CrossRefPubMed
  14. 14.↵
    1. Bank D,
    2. Koenigstein N,
    3. Giryes R
    . Autoencoders. April 3, 2021. arXiv https://arxiv.org/abs/2003.05991. Accessed June 29, 2022
  15. 15.↵
    1. Hinton GE,
    2. Salakhutdinov RR
    . Reducing the dimensionality of data with neural networks. Science 2006;313:504–07 doi:10.1126/science.1127647 pmid:16873662
    Abstract/FREE Full Text
  16. 16.↵
    1. Ranzato MA,
    2. Huang FJ,
    3. Boureau Y-L, et al
    . Unsupervised learning of invariant feature hierarchies with applications to object recognition. 2007 IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, Minnesota. June 17, 2007:1–8
  17. 17.↵
    1. Stupp R,
    2. Mason WP,
    3. van den Bent MJ, et al
    ; National Cancer Institute of Canada Clinical Trials Group. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 2005;352:987–96 doi:10.1056/NEJMoa043330 pmid:15758009
    CrossRefPubMedWeb of Science
  18. 18.↵
    1. Roa W,
    2. Brasher PM,
    3. Bauman G, et al
    . Abbreviated course of radiation therapy in older patients with glioblastoma multiforme: a prospective randomized clinical trial. J Clin Oncol 2004;22:1583–88 doi:10.1200/JCO.2004.06.082 pmid:15051755
    Abstract/FREE Full Text
  19. 19.↵
    1. Rousseeuw PJ
    . Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math 1987;20:53–65 doi:10.1016/0377-0427(87)90125-7
    CrossRefPubMedWeb of Science
  20. 20.↵
    1. Akbari H,
    2. Macyszyn L,
    3. Da X, et al
    . Pattern analysis of dynamic susceptibility contrast-enhanced MR imaging demonstrates peritumoral tissue heterogeneity. Radiology 2014;273:502–10 doi:10.1148/radiol.14132458 pmid:24955928
    CrossRefPubMed
  21. 21.↵
    1. Park YW,
    2. Park JE,
    3. Ahn SS, et al
    . Magnetic resonance imaging parameters for noninvasive prediction of epidermal growth factor receptor amplification in isocitrate dehydrogenase-wild-type lower-grade gliomas: a multicenter study. Neurosurgery 2021;89:257–65 doi:10.1093/neuros/nyab136 pmid:33913501
    CrossRefPubMed
  22. 22.↵
    1. Cha S,
    2. Lupo JM,
    3. Chen MH, et al
    . Differentiation of glioblastoma multiforme and single brain metastasis by peak height and percentage of signal intensity recovery derived from dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. AJNR Am J Neuroradiol 2007;28:1078–84 doi:10.3174/ajnr.A0484 pmid:17569962
    CrossRefPubMedWeb of Science
  23. 23.↵
    1. Mangla R,
    2. Kolar B,
    3. Zhu T, et al
    . Percentage signal recovery derived from MR dynamic susceptibility contrast imaging is useful to differentiate common enhancing malignant lesions of the brain. AJNR Am J Neuroradiol 2011;32:1004–10 doi:10.3174/ajnr.A2441 pmid:21511863
    Abstract/FREE Full Text
  24. 24.↵
    1. Ashburner J,
    2. Friston KJ
    . Unified segmentation. Neuroimage 2005;26:839–51 doi:10.1016/j.neuroimage.2005.02.018 pmid:15955494
    CrossRefPubMedWeb of Science
  25. 25.↵
    1. Ingrisch M,
    2. Schneider MJ,
    3. Norenberg D, et al
    . Radiomic analysis reveals prognostic information in T1-weighted baseline magnetic resonance imaging in patients with glioblastoma. Invest Radiol 2017;52:360–66 doi:10.1097/RLI.0000000000000349 pmid:28079702
    CrossRefPubMed
  26. 26.↵
    1. Parsa AT,
    2. Wachhorst S,
    3. Lamborn KR, et al
    . Prognostic significance of intracranial dissemination of glioblastoma multiforme in adults. J Neurosurg 2005;102:622–28 doi:10.3171/jns.2005.102.4.0622 pmid:15871503
    CrossRefPubMedWeb of Science
  27. 27.↵
    1. Stecco A,
    2. Pisani C,
    3. Quarta R, et al
    . DTI and PWI analysis of peri-enhancing tumoral brain tissue in patients treated for glioblastoma. J Neurooncol 2011;102:261–71 doi:10.1007/s11060-010-0310-x pmid:20658351
    CrossRefPubMed
  28. 28.↵
    1. Aerts HJ,
    2. Velazquez ER,
    3. Leijenaar RT, et al
    . Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 2014;5:4006 doi:10.1038/ncomms5006 pmid:24892406
    CrossRefPubMed
  29. 29.↵
    1. Kumar V,
    2. Gu Y,
    3. Basu S, et al
    . Radiomics: the process and the challenges. Magn Reson Imaging 2012;30:1234–48 doi:10.1016/j.mri.2012.06.010 pmid:22898692
    CrossRefPubMed
  30. 30.↵
    1. Lee J,
    2. Jain R,
    3. Khalil K, et al
    . Texture feature ratios from relative CBV maps of perfusion MRI are associated with patient survival in glioblastoma. AJNR Am J Neuroradiol 2016;37:37–43 doi:10.3174/ajnr.A4534 pmid:26471746
    Abstract/FREE Full Text
  31. 31.↵
    1. Choi KS,
    2. Choi SH,
    3. Jeong B
    . Prediction of IDH genotype in gliomas with dynamic susceptibility contrast perfusion MR imaging using an explainable recurrent neural network. Neuro Oncol 2019;21:1197–209 doi:10.1093/neuonc/noz095 pmid:31127834
    CrossRefPubMed
  32. 32.↵
    1. Bakas S,
    2. Akbari H,
    3. Pisapia J, et al
    . In vivo detection of EGFRvIII in glioblastoma via perfusion magnetic resonance imaging signature consistent with deep peritumoral infiltration: the φ-index. Clin Cancer Res 2017;23:4724–34 doi:10.1158/1078-0432.CCR-16-1871 pmid:28428190
    Abstract/FREE Full Text
  33. 33.↵
    1. Ishii A,
    2. Kimura T,
    3. Sadahiro H, et al
    . Histological characterization of the tumorigenic “peri-necrotic niche” harboring quiescent stem-like tumor cells in glioblastoma. PLoS One 2016;11:e0147366 doi:10.1371/journal.pone.0147366 pmid:26799577
    CrossRefPubMed
  34. 34.↵
    1. Lee MD,
    2. Baird GL,
    3. Bell LC, et al
    . Utility of percentage signal recovery and baseline signal in DSC-MRI optimized for relative CBV measurement for differentiating glioblastoma, lymphoma, metastasis, and meningioma. AJNR Am J Neuroradiol 2019;40:1445–50 doi:10.3174/ajnr.A6153 pmid:31371360
    Abstract/FREE Full Text
  35. 35.↵
    1. French A,
    2. Macedo M,
    3. Poulsen J, et al
    . Multivariate analysis of variance (MANOVA). 2008
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 44 (5)
American Journal of Neuroradiology
Vol. 44, Issue 5
1 May 2023
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Deep Learning of Time–Signal Intensity Curves from Dynamic Susceptibility Contrast Imaging Enables Tissue Labeling and Prediction of Survival in Glioblastoma
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
J. Yun, S. Yun, J.E. Park, E.-N. Cheong, S.Y. Park, N. Kim, H.S. Kim
Deep Learning of Time–Signal Intensity Curves from Dynamic Susceptibility Contrast Imaging Enables Tissue Labeling and Prediction of Survival in Glioblastoma
American Journal of Neuroradiology May 2023, 44 (5) 543-552; DOI: 10.3174/ajnr.A7853

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Deep Learning for Glioblastoma Survival Prediction
J. Yun, S. Yun, J.E. Park, E.-N. Cheong, S.Y. Park, N. Kim, H.S. Kim
American Journal of Neuroradiology May 2023, 44 (5) 543-552; DOI: 10.3174/ajnr.A7853
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

Adult Brain

  • Diagnostic Neuroradiology of Monoclonal Antibodies
  • Clinical Outcomes After Chiari I Decompression
  • Segmentation of Brain Metastases with BLAST
Show more Adult Brain

Functional

  • Kurtosis and Epileptogenic Tubers: A Pilot Study
  • Glutaric Aciduria Type 1: DK vs. Conventional MRI
  • Multiparametric MRI in PEDS Pontine Glioma
Show more Functional

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire